Suppr超能文献

揭示温暖致密量子等离子体中的电子关联

Unraveling electronic correlations in warm dense quantum plasmas.

作者信息

Dornheim Tobias, Döppner Tilo, Tolias Panagiotis, Böhme Maximilian P, Fletcher Luke B, Gawne Thomas, Graziani Frank R, Kraus Dominik, MacDonald Michael J, Moldabekov Zhandos A, Schwalbe Sebastian, Gericke Dirk O, Vorberger Jan

机构信息

Center for Advanced Systems Understanding (CASUS), Görlitz, Germany.

Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany.

出版信息

Nat Commun. 2025 Jun 2;16(1):5103. doi: 10.1038/s41467-025-60278-3.

Abstract

The study of matter at extreme densities and temperatures has emerged as a highly active frontier at the interface of plasma physics, material science and quantum chemistry with relevance for planetary modeling and inertial confinement fusion. A particular feature of such warm dense matter is the complex interplay of Coulomb interactions, quantum effects, and thermal excitations, making its rigorous theoretical description challenging. Here, we demonstrate how ab initio path integral Monte Carlo simulations allow us to unravel this intricate interplay for the example of strongly compressed beryllium, focusing on two X-ray Thomson scattering data sets obtained at the National Ignition Facility. We find excellent agreement between simulation and experiment with a very high level of consistency between independent observations without the need for any empirical input parameters. Our results call into question previously used chemical models, with important implications for the interpretation of scattering experiments and radiation hydrodynamics simulations.

摘要

对处于极端密度和温度下物质的研究,已成为等离子体物理学、材料科学和量子化学交叉领域中一个高度活跃的前沿领域,与行星建模和惯性约束聚变相关。这种温稠密物质的一个特殊特征是库仑相互作用、量子效应和热激发之间的复杂相互作用,这使得对其进行严格的理论描述具有挑战性。在这里,我们展示了从头算路径积分蒙特卡罗模拟如何让我们以强压缩铍为例解开这种复杂的相互作用,重点关注在国家点火设施获得的两组X射线汤姆逊散射数据集。我们发现模拟与实验之间具有极好的一致性,独立观测之间具有非常高的一致性,且无需任何经验输入参数。我们的结果对先前使用的化学模型提出了质疑,对散射实验和辐射流体动力学模拟的解释具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e78f/12130286/b388c2a8bf65/41467_2025_60278_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验