Gurger Murat, Esmez Omer, Key Sefa, Hafeez-Baig Abdul, Dogan Sengul, Tuncer Turker
Department of Orthopedics, Firat University Hospital, Firat University, Elazig, 23119, Turkey.
Orthopedics and Traumatology Department, Elazig Fethi Sekin City Hospital, 23100, Elazig, Turkey.
Radiol Phys Technol. 2025 Jun 2. doi: 10.1007/s12194-025-00918-x.
The landscape of computer vision is predominantly shaped by two groundbreaking methodologies: transformers and convolutional neural networks (CNNs). In this study, we aim to introduce an innovative mobile CNN architecture designed for orthopedic imaging that efficiently identifies both Bankart and SLAP lesions. Our approach involved the collection of two distinct magnetic resonance (MR) image datasets, with the primary goal of automating the detection of Bankart and SLAP lesions. A novel mobile CNN, dubbed MobileTurkerNeXt, forms the cornerstone of this research. This newly developed model, comprising roughly 1 million trainable parameters, unfolds across four principal stages: the stem, main, downsampling, and output phases. The stem phase incorporates three convolutional layers to initiate feature extraction. In the main phase, we introduce an innovative block, drawing inspiration from ConvNeXt, EfficientNet, and ResNet architectures. The downsampling phase utilizes patchify average pooling and pixel-wise convolution to effectively reduce spatial dimensions, while the output phase is meticulously engineered to yield classification outcomes. Our experimentation with MobileTurkerNeXt spanned three comparative scenarios: Bankart versus normal, SLAP versus normal, and a tripartite comparison of Bankart, SLAP, and normal cases. The model demonstrated exemplary performance, achieving test classification accuracies exceeding 96% across these scenarios. The empirical results underscore the MobileTurkerNeXt's superior classification process in differentiating among Bankart, SLAP, and normal conditions in orthopedic imaging. This underscores the potential of our proposed mobile CNN in advancing diagnostic capabilities and contributing significantly to the field of medical image analysis.
Transformer和卷积神经网络(CNN)。在本研究中,我们旨在引入一种专为骨科成像设计的创新型移动CNN架构,该架构能有效识别Bankart损伤和SLAP损伤。我们的方法涉及收集两个不同的磁共振(MR)图像数据集,主要目标是实现Bankart损伤和SLAP损伤检测的自动化。一种名为MobileTurkerNeXt的新型移动CNN构成了本研究的基石。这个新开发的模型包含约100万个可训练参数,分为四个主要阶段展开:主干阶段、主体阶段、下采样阶段和输出阶段。主干阶段包含三个卷积层以启动特征提取。在主体阶段,我们引入了一个创新模块,其灵感来自ConvNeXt、EfficientNet和ResNet架构。下采样阶段利用分块平均池化和逐像素卷积来有效降低空间维度,而输出阶段经过精心设计以产生分类结果。我们对MobileTurkerNeXt的实验涵盖了三种比较场景:Bankart损伤与正常情况对比、SLAP损伤与正常情况对比,以及Bankart损伤、SLAP损伤和正常情况的三方比较。该模型表现出了卓越的性能,在这些场景中测试分类准确率超过了96%。实证结果强调了MobileTurkerNeXt在骨科成像中区分Bankart损伤、SLAP损伤和正常情况方面的卓越分类过程。这凸显了我们提出的移动CNN在提升诊断能力以及对医学图像分析领域做出重大贡献方面的潜力。