Suppr超能文献

评估基于人工智能的模型驱动药物研发(MIDD)的影响:一项比较性综述。

Evaluating the Impact of AI-Based Model-Informed Drug Development (MIDD): A Comparative Review.

作者信息

Mao Bingyu, Gao Yue, Xu Christine, Macha Sreeraj, Shao Shuai, Ahamadi Malidi

机构信息

Sanofi, Morristown, NJ, USA.

McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas, USA.

出版信息

AAPS J. 2025 Jun 2;27(4):102. doi: 10.1208/s12248-025-01075-0.

Abstract

Model-informed drug development (MIDD) methods play critical role to ensure development of efficacious, and safe individualized therapies. The application of artificial intelligence/machine learning (AI/ML) within the field of drug development has exponentially expanded. Integrating AI/ML into traditional pharmacometrics approaches or using AI/ML as a stand-alone tool has the potential to optimize dosing strategies, inform clinical trial designs, and enhance robustness of quantitative assessments of drug efficacy and safety. This review systematically evaluates the impact of AI-based model-informed drug development (MIDD) methods compared to traditional approaches by blending regulatory perspectives. We conducted a systematic search on PubMed using five Medical Subject Headings (MeSH) terms and included 67 relevant studies in the analysis. The results indicate that AI models have the potential of improving MIDD approaches through different stages of drug development to inform decision-making in clinical trials. However, limitations such as the lack of standardized evaluation metrics and standardized regulatory guidelines on the use of AI-based MIDD methods were noted. Overall, this review highlights the potential applications of AI in drug development and provides a foundation for future research to optimize and integrate AI-based approaches in this field.

摘要

模型引导药物研发(MIDD)方法在确保开发有效且安全的个体化疗法方面发挥着关键作用。人工智能/机器学习(AI/ML)在药物研发领域的应用呈指数级增长。将AI/ML整合到传统的药代动力学方法中,或把AI/ML作为独立工具使用,有可能优化给药策略、为临床试验设计提供信息,并增强药物疗效和安全性定量评估的稳健性。本综述通过融合监管视角,系统地评估了基于AI的模型引导药物研发(MIDD)方法与传统方法相比所产生的影响。我们使用五个医学主题词(MeSH)在PubMed上进行了系统检索,并在分析中纳入了67项相关研究。结果表明,AI模型有潜力在药物研发的不同阶段改进MIDD方法,为临床试验中的决策提供信息。然而,也注意到了一些局限性,比如缺乏标准化的评估指标以及关于基于AI的MIDD方法使用的标准化监管指南。总体而言,本综述突出了AI在药物研发中的潜在应用,并为未来在该领域优化和整合基于AI的方法的研究奠定了基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验