Suppr超能文献

低维神经 ODE 及其在药代动力学中的应用。

Low-dimensional neural ODEs and their application in pharmacokinetics.

机构信息

Pediatric Pharmacology and Pharmacometrics, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland.

Department of Mathematics and Statistics, University of Konstanz, Constance, Germany.

出版信息

J Pharmacokinet Pharmacodyn. 2024 Apr;51(2):123-140. doi: 10.1007/s10928-023-09886-4. Epub 2023 Oct 14.

Abstract

Machine Learning (ML) is a fast-evolving field, integrated in many of today's scientific disciplines. With the recent development of neural ordinary differential equations (NODEs), ML provides a new tool to model dynamical systems in the field of pharmacology and pharmacometrics, such as pharmacokinetics (PK) or pharmacodynamics. The novel and conceptionally different approach of NODEs compared to classical PK modeling creates challenges but also provides opportunities for its application. In this manuscript, we introduce the functionality of NODEs and develop specific low-dimensional NODE structures based on PK principles. We discuss two challenges of NODEs, overfitting and extrapolation to unseen data, and provide practical solutions to these problems. We illustrate concept and application of our proposed low-dimensional NODE approach with several PK modeling examples, including multi-compartmental, target-mediated drug disposition, and delayed absorption behavior. In all investigated scenarios, the NODEs were able to describe the data well and simulate data for new subjects within the observed dosing range. Finally, we briefly demonstrate how NODEs can be combined with mechanistic models. This research work enhances understanding of how NODEs can be applied in PK analyses and illustrates the potential for NODEs in the field of pharmacology and pharmacometrics.

摘要

机器学习 (ML) 是一个快速发展的领域,集成在当今许多科学学科中。随着神经常微分方程 (NODEs) 的最新发展,ML 为药理学和药物代谢动力学 (PK) 或药效动力学等领域的动态系统建模提供了新工具。与经典 PK 建模相比,NODEs 的新颖和概念性不同的方法带来了挑战,但也为其应用提供了机会。在本文中,我们介绍了 NODEs 的功能,并基于 PK 原理开发了特定的低维 NODE 结构。我们讨论了 NODEs 的两个挑战,即过拟合和对未见数据的外推,并提供了这些问题的实用解决方案。我们用几个 PK 建模示例说明了我们提出的低维 NODE 方法的概念和应用,包括多室、靶向介导的药物处置和延迟吸收行为。在所有研究的情况下,NODEs 都能够很好地描述数据,并模拟观察到的给药范围内新受试者的数据。最后,我们简要演示了如何将 NODEs 与机制模型结合使用。这项研究工作增强了对 NODEs 在 PK 分析中的应用的理解,并说明了其在药理学和药物代谢动力学领域的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f21a/10982100/7afce24f7e3c/10928_2023_9886_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验