Suppr超能文献

用于真空沉积钙钛矿/硅双端串联太阳能电池的分子重组结

Molecular Recombination Junction for Vacuum-Deposited Perovskite/Silicon Two-Terminal Tandem Solar Cells.

作者信息

Chozas-Barrientos Sofía, Paliwal Abhyuday, Ventosinos Federico, Roldán-Carmona Cristina, Gil-Escrig Lidón, Held Vladimir, Carroy Perrine, Muñoz Delfina, Bolink Henk J

机构信息

Instituto de Ciencia Molecular, Universidad de Valencia, Calle Catedratico Jose Beltran 2, 46980 Paterna, Spain.

Université Grenoble Alpes, CEA, Liten, Campus Ines, 50 avenue du Lac Léman, F-73375 Le Bourget-du-Lac, France.

出版信息

ACS Energy Lett. 2025 Mar 17;10(4):1733-1740. doi: 10.1021/acsenergylett.5c00155. eCollection 2025 Apr 11.

Abstract

The use of commercial, Czochralski-grown silicon wafers as bottom cells in two-terminal perovskite/silicon tandem configurations often leads to defects in the top perovskite absorber due to their rough surfaces, featuring μm-sized pyramids and saw damages. Most recombination junctions in two-terminal tandem cells employ high conductive indium tin oxide which increases the effect of local shunts in the top cell by connecting them. We use Suns- with selective illumination and external quantum efficiency measurements to identify these shunts. Additionally, we show that a molecular recombination junction composed of an n-doped C layer and a p-doped conjugated arylamine layer alleviates the effect of the shunts in the top cell, which we attribute to the lower lateral conductivity of the organic layers. This enables us to prepare two-terminal tandem devices using fully evaporated top cells on Czochralski textured silicon heterojunction cells with s of up to 1.84 V and efficiencies above 22%.

摘要

在两端式钙钛矿/硅串联结构中,使用商业直拉法生长的硅片作为底部电池,由于其粗糙的表面(具有微米级的金字塔结构和切割损伤),常常会导致顶部钙钛矿吸收层出现缺陷。两端式串联电池中的大多数复合结采用高导电性的氧化铟锡,通过连接顶部电池中的局部分流来增强其影响。我们利用选择性照明的Suns-和外部量子效率测量来识别这些分流。此外,我们表明,由n型掺杂C层和p型掺杂共轭芳胺层组成的分子复合结减轻了顶部电池中分流的影响,我们将其归因于有机层较低的横向电导率。这使我们能够在直拉法织构化的硅异质结电池上使用完全蒸发的顶部电池制备两端式串联器件,开路电压高达1.84 V,效率超过22%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4cd0/12127976/4e3ebd31f2a6/nz5c00155_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验