Méteignier Louis-Valentin, Szwarc Sarah, Barunava Patra, Durand Mickael, Zamar Duchesse-Lacours, Birer Williams Caroline, Gautron Nicolas, Dutilleul Christelle, Koudounas Konstantinos, Lezin Enzo, Perrot Thomas, Oudin Audrey, Pateyron Stéphanie, Delannoy Etienne, Brunaud Veronique, Lanoue Arnaud, Abbasi Bilal Haider, St-Pierre Benoit, Jensen Michael Krogh, Papon Nicolas, Sun Chao, Le Pogam Pierre, Yuan Ling, Beniddir Mehdi A, Besseau Sébastien, Courdavault Vincent
Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, 37200, Tours, France.
Équipe Chimie des Substances Naturelles, BioCIS, Université Paris-Saclay, CNRS, 91400, Orsay, France.
Plant Physiol Biochem. 2025 Feb;219:109363. doi: 10.1016/j.plaphy.2024.109363. Epub 2024 Nov 29.
Monoterpene indole alkaloids (MIAs) are valuable metabolites produced in numerous medicinal plants from the Apocynaceae family such as Alstonia scholaris, which synthesizes strictamine, a MIA displaying neuropharmacological properties of a potential importance. To get insights into the MIA metabolism in A. scholaris, we studied here both the spatial and transcriptional regulations of MIA genes by performing a robust transcriptomics analysis of the main plant organs, leaf epidermis but also by sequencing RNA from leaves transiently overexpressing the master transcriptional regulator MYC2. These transcriptomic studies notably demonstrated that the first steps of the MIA pathway are successively distributed in the internal phloem associated parenchyma and epidermis, and that MYC2 exerts a remarkable transcriptional effect by modulating the expression of around 1000 genes. By combining these distinct datasets, we initiated the search for MIA-related genes encoding CYP71, based on the similarity of expression compared to already known MIA genes. Transient expression of these candidates in Nicotiana benthamiana leaves and yeast notably led to the identification of a related isoform of rhazimal synthase (RHS) capable of converting the MIA precursor geissoschizine into akuammicine, strictamine and 16-epi-pleiocarpamine. Investigating its catalytic mechanism revealed that strictamine results from rhazimal deformylation and that a similar mechanism may also explain 16-epi-pleiocarpamine synthesis. This prompted us to rename these enzymes geissoschizine cyclase due to their capacity of cyclizing geissoschizine into three different MIA scaffolds and to form both C-C and C-N bonds. This identification thus illustrates the potential of integrating spatial and transcriptional regulation analysis for MIA gene identification.
单萜吲哚生物碱(MIAs)是夹竹桃科众多药用植物中产生的有价值的代谢产物,如印度萝芙木,它能合成士的宁,一种具有潜在重要神经药理学特性的MIA。为了深入了解印度萝芙木中的MIA代谢,我们在此通过对主要植物器官、叶表皮进行强大的转录组学分析,以及对过表达主要转录调节因子MYC2的叶片RNA进行测序,研究了MIA基因的空间和转录调控。这些转录组学研究特别表明,MIA途径的第一步依次分布在内韧皮部相关薄壁组织和表皮中,并且MYC2通过调节约1000个基因的表达发挥显著的转录作用。通过整合这些不同的数据集,我们基于与已知MIA基因表达的相似性,开始寻找编码CYP71的MIA相关基因。这些候选基因在本氏烟草叶片和酵母中的瞬时表达显著导致鉴定出一种与拉齐马合酶(RHS)相关的同工型,它能够将MIA前体格伊索辛转化为阿枯米辛、士的宁和16 - 表 - 异胡豆碱。对其催化机制的研究表明,士的宁是由拉齐马脱甲酰化产生的,并且类似的机制也可能解释16 - 表 - 异胡豆碱的合成。这促使我们将这些酶重新命名为格伊索辛环化酶,因为它们能够将格伊索辛环化为三种不同的MIA支架,并形成C - C键和C - N键。因此,这一鉴定说明了整合空间和转录调控分析用于MIA基因鉴定的潜力。