Ayers Charles, Zhang Jiwei
Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, Minnesota 55108.
Mycologia. 2025 Jul-Aug;117(4):576-588. doi: 10.1080/00275514.2025.2499476. Epub 2025 Jun 3.
Large-scale manufacturing and disposal of fluorinated chemicals have led to global pollution by per- and polyfluoroalkyl substances (PFAS) that will require novel remediation techniques and investigation for their environmental fates. Fungi are dominant carbon nutrient recyclers in ecosystems, but their roles in responding to and degrading these persistent fluorocarbons remain largely untapped. Here, we investigated the fungal species' responses to perflouroalkyl carboxylic acid (PFCA) chemicals and their capacities in breaking down C-F bonds for defluorination (deF) by using the ion-selective electrode for quantifying free fluoride anions and the F nuclear magnetic resonance (NMR) for monitoring PFAS removal in fungal cultures. Cytotoxicity assays showed that taxa within a unique class of fungi that cause "white rot" type of wood decay have developed an inherent defense mechanism for fluoride and fluorocarbon chemicals, setting off a basis for further investigating their deF phenotype. Although the current test did not evidence clear deF in legacy PFAS, including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS), it identified dehalogenated PFCA structures associated with an electron-attracting alkenyl group that provokes C-F cleavage. Our research, therefore, set a foundation for further unraveling the fungal deF mechanisms, and it also highlighted that future research should give sufficient attention to resident fungal communities in impacted environments due to their potential to recycle fluorinated compounds.
大规模生产和处置含氟化学品导致全氟和多氟烷基物质(PFAS)对全球造成污染,这需要新的修复技术并对其环境归宿进行研究。真菌是生态系统中主要的碳养分循环者,但它们在应对和降解这些持久性碳氟化合物方面的作用在很大程度上尚未得到开发。在这里,我们通过使用离子选择性电极定量游离氟阴离子以及利用氟核磁共振(NMR)监测真菌培养物中PFAS的去除情况,研究了真菌物种对全氟烷基羧酸(PFCA)化学品的反应及其分解碳氟键进行脱氟(deF)的能力。细胞毒性试验表明,一类导致“白腐”型木材腐烂的独特真菌中的分类群已经形成了对氟化物和碳氟化合物化学品的固有防御机制,这为进一步研究它们的脱氟表型奠定了基础。尽管目前的测试没有证明在包括全氟辛酸(PFOA)和全氟辛烷磺酸(PFOS)在内的传统PFAS中有明显的脱氟现象,但它确定了与吸引电子的烯基相关的脱卤PFCA结构,这种结构会引发碳氟键的断裂。因此,我们的研究为进一步揭示真菌脱氟机制奠定了基础,同时也强调未来的研究应充分关注受影响环境中的本地真菌群落,因为它们具有循环利用氟化物的潜力。