通过生物学引导的机器学习和动力学建模实现情境感知生物传感器设计

Context-Aware Biosensor Design Through Biology-Guided Machine Learning and Dynamical Modeling.

作者信息

Tellechea-Luzardo Jonathan, Martin Lazaro Hector, Fernandez Perez Christian, Henriques David, Otero-Muras Irene, Carbonell Pablo

机构信息

Institute of Industrial Control Systems and Computing (AI2), Universitat Politècnica de València (UPV), València 46022, Spain.

Institute for Integrative Systems Biology I2SysBio, Universitat de Valencia-CSIC, Catedratico Agustin Escardino Benlloch 9, Paterna, Valencia 36208, Spain.

出版信息

ACS Synth Biol. 2025 Jun 20;14(6):2094-2104. doi: 10.1021/acssynbio.4c00894. Epub 2025 Jun 3.

Abstract

Addressing the challenge of achieving a global circular bioeconomy requires efficient and robust bio-based processes operating at different scales. These processes should also be competitive replacements for the production of chemicals currently obtained from fossil resources, as well as for the production of new-to-nature compounds. To that end, genetic circuits can be used to control cellular behavior and are instrumental in developing efficient cell factories. Whole-cell biosensors harbor circuits that can be based on allosteric transcription factors (TFs) to detect and elicit a response depending on the target molecule concentrations. By modifying regulatory elements and testing various genetic components, the responsive behavior of genetic biosensors can be finely tuned and engineered. While previous models have described and characterized the behavior of naringenin biosensors, additional data and resources are required to predict their dynamic response and performance in different contexts, such as under various gene expression regulatory elements, media, carbon sources, or media supplements. Tuning these conditions is pivotal in optimizing biosensor design for applications operating in varying conditions, such as fermentation processes. In this study, we assembled a library of FdeR biosensors, characterized their performance under different conditions, and developed a mechanistic model to describe their dynamic behavior under reference conditions, which guided a machine learning-based predictive model that accounts for context-dependent dynamic parameters. Such a Design-Build-Test-Learn (DBTL) pipeline allowed us to determine optimal condition combinations for the desired biosensor specifications, both for automated screening and dynamic regulation. The findings of this work contribute to a deeper understanding of whole-cell biosensors and their potential for precise measurement, screening, and dynamic regulation of engineered production pathways for valuable molecules.

摘要

应对实现全球循环生物经济的挑战需要在不同规模上运行高效且稳健的生物基工艺。这些工艺还应成为目前从化石资源中获取化学品以及生产新型天然化合物的具有竞争力的替代方案。为此,基因回路可用于控制细胞行为,并在开发高效细胞工厂中发挥重要作用。全细胞生物传感器包含基于变构转录因子(TFs)的回路,可根据目标分子浓度检测并引发反应。通过修改调控元件并测试各种基因组件,可以对基因生物传感器的响应行为进行精细调整和设计。虽然之前的模型已经描述并表征了柚皮素生物传感器的行为,但还需要额外的数据和资源来预测它们在不同环境下的动态响应和性能,例如在各种基因表达调控元件、培养基、碳源或培养基添加剂存在的情况下。调整这些条件对于优化生物传感器设计以用于不同条件下运行的应用(如发酵过程)至关重要。在本研究中,我们组装了一个FdeR生物传感器文库,表征了它们在不同条件下的性能,并开发了一个机制模型来描述它们在参考条件下的动态行为,该模型指导了一个基于机器学习的预测模型,该模型考虑了上下文相关的动态参数。这样的设计 - 构建 - 测试 - 学习(DBTL)流程使我们能够确定针对所需生物传感器规格的最佳条件组合,用于自动筛选和动态调节。这项工作的结果有助于更深入地理解全细胞生物传感器及其在精确测量、筛选和动态调节有价值分子的工程生产途径方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b37/12186671/bead8a7e4b72/sb4c00894_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索