Suppr超能文献

基于加速度计传感器和深度学习的运动训练中的能量消耗分析与预测

Energy consumption analysis and prediction in exercise training based on accelerometer sensors and deep learning.

作者信息

Guo Zhangjian, Wang Tongling, Chi Shuxun, Huang Li

机构信息

Yuncheng University, Yuncheng, 044000, China.

Institute of Physical Education, Huzhou University, Huzhou, 313000, China.

出版信息

Sci Rep. 2025 Jun 3;15(1):19423. doi: 10.1038/s41598-025-04380-y.

Abstract

This study aims to enhance the accuracy and efficiency of energy consumption prediction during exercise training and address the limitations of existing methods in terms of data feature extraction, model complexity, and adaptability to practical applications. This study proposes an optimized energy consumption prediction model based on accelerometer sensor data and deep learning techniques. In this study, a model architecture integrating Convolutional Neural Network (CNN), Bidirectional Long Short-Term Memory (Bi-LSTM) network, and an attention mechanism is constructed, with a focus on optimizing local feature extraction, temporal modeling, and dynamic weight allocation capabilities. Additionally, by analyzing the relationship between the X, Y, and Z-axis accelerations, overall magnitude, and energy consumption, a multidimensional feature analysis framework is proposed to enhance the model's comprehensive understanding of motion data. To verify the performance of the model, performance comparison experiments and ablation experiments are designed. The experimental results demonstrate that the optimized model achieves a Mean Squared Error (MSE) of 0.273, an R of 0.887, and a standard deviation of 0.046 on acceleration data, significantly outperforming comparison models such as Temporal Convolutional Network (TCN), Gated Recurrent Unit with Attention Mechanism (GRU-ATT), and Self-Supervised Transformer (SST). Furthermore, ablation experiments reveal that the synergistic effects of the convolutional network, Bi-LSTM, and attention mechanism significantly improve prediction accuracy and model robustness. Further analysis shows that the optimized model achieves a correlation of 0.829 between overall magnitude and energy consumption, validating its ability to capture complex motion features. Therefore, this study provides an efficient, accurate, and highly adaptable solution for the field of energy consumption prediction in exercise, contributing to research on intelligent motion monitoring, health management, and personalized training program development.

摘要

本研究旨在提高运动训练期间能量消耗预测的准确性和效率,并解决现有方法在数据特征提取、模型复杂性以及对实际应用的适应性方面的局限性。本研究提出了一种基于加速度计传感器数据和深度学习技术的优化能量消耗预测模型。在本研究中,构建了一种集成卷积神经网络(CNN)、双向长短期记忆(Bi-LSTM)网络和注意力机制的模型架构,重点优化局部特征提取、时间建模和动态权重分配能力。此外,通过分析X、Y和Z轴加速度、总体大小与能量消耗之间的关系,提出了一个多维特征分析框架,以增强模型对运动数据的全面理解。为了验证模型的性能,设计了性能比较实验和消融实验。实验结果表明,优化后的模型在加速度数据上的均方误差(MSE)为0.273,R值为0.887,标准差为0.046,显著优于时间卷积网络(TCN)、带注意力机制的门控循环单元(GRU-ATT)和自监督变压器(SST)等比较模型。此外,消融实验表明,卷积网络、Bi-LSTM和注意力机制的协同效应显著提高了预测准确性和模型鲁棒性。进一步分析表明,优化后的模型在总体大小与能量消耗之间的相关性为0.829,验证了其捕捉复杂运动特征的能力。因此,本研究为运动能量消耗预测领域提供了一种高效、准确且高度适应性强的解决方案,有助于智能运动监测、健康管理和个性化训练计划开发等方面的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c19/12134112/d0593f331b8e/41598_2025_4380_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验