Mylonas Adam, Li Zeyao, Mueller Marco, Booth Jeremy T, Brown Ryan, Gardner Mark, Kneebone Andrew, Eade Thomas, Keall Paul J, Nguyen Doan Trang
Image X Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia.
Institute of Medical Physics, School of Physics, The University of Sydney, Sydney, NSW, Australia.
Commun Med (Lond). 2025 Jun 3;5(1):212. doi: 10.1038/s43856-025-00935-2.
During radiation therapy, the natural movement of organs can lead to underdosing the cancer and overdosing the healthy tissue, compromising treatment efficacy. Real-time image-guided adaptive radiation therapy can track the tumour and account for the motion. Typically, fiducial markers are implanted as a surrogate for the tumour position due to the low radiographic contrast of soft tissues in kilovoltage (kV) images. A segmentation approach that does not require markers would eliminate the costs, delays, and risks associated with marker implantation.
We trained patient-specific conditional Generative Adversarial Networks for prostate segmentation in kV images. The networks were trained using synthetic kV images generated from each patient's own imaging and planning data, which are available prior to the commencement of treatment. We validated the networks on two treatment fractions from 30 patients using multi-centre data from two clinical trials.
Here, we present a large-scale proof-of-principle study of x-ray-based markerless prostate segmentation for globally available cancer therapy systems. Our results demonstrate the feasibility of a deep learning approach using kV images to track prostate motion across the entire treatment arc for 30 patients with prostate cancer. The mean absolute deviation is 1.4 and 1.6 mm in the anterior-posterior/lateral and superior-inferior directions, respectively.
Markerless segmentation via deep learning may enable real-time image guidance on conventional cancer therapy systems without requiring implanted markers or additional hardware, thereby expanding access to real-time adaptive radiation therapy.
在放射治疗期间,器官的自然运动可导致癌症剂量不足和健康组织剂量过量,从而影响治疗效果。实时图像引导的自适应放射治疗可以追踪肿瘤并考虑运动因素。由于千伏(kV)图像中软组织的射线照相对比度较低,通常植入基准标记物作为肿瘤位置的替代物。一种不需要标记物的分割方法将消除与标记物植入相关的成本、延迟和风险。
我们针对kV图像中的前列腺分割训练了患者特异性条件生成对抗网络。使用从每个患者自己的成像和计划数据生成的合成kV图像对网络进行训练,这些数据在治疗开始前即可获得。我们使用来自两项临床试验的多中心数据,对30名患者的两个治疗分次进行了网络验证。
在此,我们展示了一项针对全球可用癌症治疗系统基于X射线的无标记前列腺分割的大规模原理验证研究。我们的结果证明了使用kV图像的深度学习方法追踪30例前列腺癌患者整个治疗弧上前列腺运动的可行性。在前后/侧向和上下方向上的平均绝对偏差分别为1.4毫米和1.6毫米。
通过深度学习进行无标记分割可在传统癌症治疗系统上实现实时图像引导,而无需植入标记物或额外硬件,从而扩大实时自适应放射治疗的可及性。