Abidi Abrar A, Dailey Gina M, Tjian Robert, Graham Thomas G W
Department of Molecular and Cell Biology, University of California, Berkeley, United States.
Howard Hughes Medical Institute, University of California, Berkeley, United States.
bioRxiv. 2025 May 23:2025.05.16.654615. doi: 10.1101/2025.05.16.654615.
Eukaryotic transcription factors (TFs) contain both structured DNA-binding domains (DBDs) and intrinsically disordered regions (IDRs). While the structures and sequence preferences of DBDs have been extensively characterized, the role of IDR-mediated interactions in chromatin binding and nuclear organization remains poorly understood, in part because these interactions have been difficult to measure in living cells. Here, we use a recently developed single-molecule technique, proximity-assisted photoactivation (PAPA), to investigate how IDRs influence TF associations with each other and with chromatin, focusing on the factors Sp1 and Klf1. We find that the number and patterning of aromatic and basic residues within IDRs govern both TF self-association and chromatin binding. Unexpectedly, the isolated DBD of Sp1 binds chromatin very weakly and non-specifically. The isolated IDR, by contrast, interacts poorly with chromatin-bound wild-type Sp1, yet this interaction is enhanced when even minimal DNA-binding capacity is restored. Strikingly, replacing Sp1's native DBD with those of heterologous TFs recovers both IDR-mediated interactions and chromatin association, despite divergent sequence preferences. PAPA measurements also reveal extensive heterotypic interactions between wild-type Sp1 and other TFs. Together, these results establish PAPA as a powerful method for studying unstructured interactions in their native context and suggest that IDRs participate in widespread cooperative associations scaffolded by transient DBD-DNA contacts, which concentrate disordered regions along chromatin. In contrast to classical models, we propose that TF specificity emerges not solely from DBD sequence preferences, but from a constellation of weak, dynamic, and diverse interactions mediated by IDRs.
真核转录因子(TFs)既包含结构化的DNA结合结构域(DBDs),也包含内在无序区域(IDRs)。虽然DBDs的结构和序列偏好已得到广泛表征,但IDR介导的相互作用在染色质结合和核组织中的作用仍知之甚少,部分原因是这些相互作用在活细胞中难以测量。在这里,我们使用最近开发的单分子技术——邻近辅助光激活(PAPA),来研究IDRs如何影响TFs之间以及与染色质的关联,重点关注Sp1和Klf1因子。我们发现IDRs内芳香族和碱性残基的数量和模式决定了TF的自我结合和染色质结合。出乎意料的是,Sp1的分离DBD与染色质的结合非常弱且是非特异性的。相比之下,分离的IDR与染色质结合的野生型Sp1相互作用较差,但当恢复哪怕是最小的DNA结合能力时,这种相互作用就会增强。引人注目的是,用异源TFs的DBD取代Sp1的天然DBD,尽管序列偏好不同,但仍能恢复IDR介导的相互作用和染色质关联。PAPA测量还揭示了野生型Sp1与其他TFs之间广泛的异型相互作用。总之,这些结果确立了PAPA作为研究天然环境中非结构化相互作用的有力方法,并表明IDRs参与了由瞬时DBD-DNA接触搭建的广泛合作关联,这些接触将无序区域集中在染色质上。与经典模型不同,我们提出TF特异性不仅源于DBD序列偏好,还源于IDRs介导的一系列微弱、动态和多样的相互作用。