Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.
Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States.
Elife. 2022 Nov 2;11:e75064. doi: 10.7554/eLife.75064.
Transcription factors (TFs) are classically attributed a modular construction, containing well-structured sequence-specific DNA-binding domains (DBDs) paired with disordered activation domains (ADs) responsible for protein-protein interactions targeting co-factors or the core transcription initiation machinery. However, this simple division of labor model struggles to explain why TFs with identical DNA-binding sequence specificity determined in vitro exhibit distinct binding profiles in vivo. The family of hypoxia-inducible factors (HIFs) offer a stark example: aberrantly expressed in several cancer types, HIF-1α and HIF-2α subunit isoforms recognize the same DNA motif in vitro - the hypoxia response element (HRE) - but only share a subset of their target genes in vivo, while eliciting contrasting effects on cancer development and progression under certain circumstances. To probe the mechanisms mediating isoform-specific gene regulation, we used live-cell single particle tracking (SPT) to investigate HIF nuclear dynamics and how they change upon genetic perturbation or drug treatment. We found that HIF-α subunits and their dimerization partner HIF-1β exhibit distinct diffusion and binding characteristics that are exquisitely sensitive to concentration and subunit stoichiometry. Using domain-swap variants, mutations, and a HIF-2α specific inhibitor, we found that although the DBD and dimerization domains are important, another main determinant of chromatin binding and diffusion behavior is the AD-containing intrinsically disordered region (IDR). Using Cut&Run and RNA-seq as orthogonal genomic approaches, we also confirmed IDR-dependent binding and activation of a specific subset of HIF target genes. These findings reveal a previously unappreciated role of IDRs in regulating the TF search and binding process that contribute to functional target site selectivity on chromatin.
转录因子(TFs)通常被认为具有模块化结构,包含结构良好的序列特异性 DNA 结合域(DBD)与负责与共因子或核心转录起始机器相互作用的无规激活域(AD)配对。然而,这种简单的分工模型难以解释为什么在体外具有相同 DNA 结合序列特异性的 TF 表现出不同的体内结合谱。缺氧诱导因子(HIFs)家族提供了一个明显的例子:在几种癌症类型中异常表达,HIF-1α 和 HIF-2α 亚基同工型在体外识别相同的 DNA 基序——缺氧反应元件(HRE)——但仅在体内共享其部分靶基因,而在某些情况下对癌症发展和进展产生相反的影响。为了探究介导同工型特异性基因调控的机制,我们使用活细胞单颗粒跟踪(SPT)来研究 HIF 核动力学以及它们在遗传扰动或药物处理后如何变化。我们发现 HIF-α 亚基及其二聚化伴侣 HIF-1β 表现出不同的扩散和结合特性,对浓度和亚基比例非常敏感。使用结构域交换变体、突变和 HIF-2α 特异性抑制剂,我们发现虽然 DBD 和二聚化结构域很重要,但另一个染色质结合和扩散行为的主要决定因素是包含无规卷曲区域(IDR)的 AD。使用 Cut&Run 和 RNA-seq 作为正交基因组方法,我们还证实了 IDR 依赖性结合和特定子集的 HIF 靶基因的激活。这些发现揭示了 IDR 在调节 TF 搜索和结合过程中的先前未被认识的作用,该过程有助于染色质上功能性靶位点选择性。