Praturu Anoop, Sharpee Tatyana O
Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
Department of Physics, University of California, San Diego, La Jolla, CA, USA.
iScience. 2024 Oct 28;27(12):111266. doi: 10.1016/j.isci.2024.111266. eCollection 2024 Dec 20.
Recent studies have demonstrated the significance of hyperbolic geometry in uncovering low-dimensional structure within complex hierarchical systems. We developed a Bayesian formulation of multi-dimensional scaling (MDS) for embedding data in hyperbolic spaces that allows for a principled determination of manifold parameters such as curvature and dimension. We show that only a small amount of data are needed to constrain the manifold, the optimization is robust against false minima, and the model is able to correctly discern between Hyperbolic and Euclidean data. Application of the method to COVID sequences revealed that viral evolution leaves the dimensionality of the space unchanged but produces a logarithmic increase in curvature, indicating a constant rate of information acquisition optimized under selective pressures. The algorithm also detected a contraction in curvature after the introduction of vaccines. The ability to discern subtle changes and structural shifts showcases the utility of this approach in understanding complex data dynamics.
最近的研究表明,双曲几何在揭示复杂层次系统中的低维结构方面具有重要意义。我们开发了一种用于在双曲空间中嵌入数据的贝叶斯多维缩放(MDS)公式,该公式允许对诸如曲率和维度等流形参数进行有原则的确定。我们表明,仅需少量数据即可约束流形,优化对虚假最小值具有鲁棒性,并且该模型能够正确区分双曲数据和欧几里得数据。将该方法应用于新冠病毒序列表明,病毒进化使空间维度保持不变,但曲率呈对数增加,这表明在选择压力下信息获取速率恒定且得到了优化。该算法还检测到疫苗引入后曲率的收缩。辨别细微变化和结构转变的能力展示了这种方法在理解复杂数据动态方面的实用性。