Yu Changhoon, Ha Jong-Kwon, Park Mincheol, Lee Jungwook, Choi Jinho, Park Boyoung Y, Boyer Cyrille, Min Seung Kyu, Kwon Min Sang
Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University Seoul 08826 Republic of Korea
Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Republic of Korea
Chem Sci. 2025 Jun 2. doi: 10.1039/d5sc02594j.
Rapid and precise acrylic polymer synthesis is essential for applications in drug delivery, programmable materials, and biosensors. However, achieving both speed and precision remains challenging, as reaction acceleration is typically coupled with increased radical concentration, leading to a trade-off between polymerization rate and molecular control. Photoiniferter RAFT polymerization, a catalyst-free, visible light-driven method, offers exceptional control but lacks a detailed mechanistic understanding of C-S bond photolysis. Here, we resolve this speed-control trade-off by leveraging a key photophysical feature of thiocarbonylthio compounds: C-S bond cleavage proceeds an S/S conical intersection (CI), enabling ultrafast, non-radiative relaxation and clean photolytic decomposition with minimal side reactions. Although quantum yield is low (0.3-0.5%), this mechanism inherently limits radical accumulation, even at elevated temperatures. As a result, propagation can be thermally accelerated without increasing termination, preserving excellent control. Coupled with flow chemistry, this strategy achieves 90% monomer conversion in 20 minutes with narrow dispersity ( = 1.02) and minimal dead chains (<2%). This work offers a scalable, energy-efficient route to precision polymers and advances the mechanistic understanding of controlled radical processes for next-generation materials.
快速且精确的丙烯酸聚合物合成对于药物递送、可编程材料和生物传感器等应用至关重要。然而,要同时实现速度和精度仍具有挑战性,因为反应加速通常伴随着自由基浓度的增加,导致聚合速率和分子控制之间存在权衡。光引发转移终止剂可逆加成-断裂链转移(Photoiniferter RAFT)聚合是一种无催化剂、可见光驱动的方法,具有出色的控制能力,但对C-S键光解缺乏详细的机理理解。在此,我们通过利用硫代羰基硫化合物的一个关键光物理特性解决了这种速度-控制的权衡:C-S键断裂通过一个S/S锥形交叉点(CI)进行,实现超快、无辐射弛豫以及具有最少副反应的清洁光解分解。尽管量子产率较低(0.3 - 0.5%),但这种机制本质上限制了自由基的积累,即使在高温下也是如此。因此,可以在不增加终止反应的情况下热加速链增长,保持出色的控制能力。与流动化学相结合,该策略在20分钟内实现了90%的单体转化率,分散度窄(Đ = 1.02)且死链最少(<2%)。这项工作为制备精密聚合物提供了一种可扩展、节能的途径,并推进了对下一代材料受控自由基过程的机理理解。