Suppr超能文献

一种纳入血液生物标志物的列线图模型可预测中风患者的3周功能结局。

A nomogram model incorporating blood biomarkers predicts 3-week functional outcomes in stroke patients.

作者信息

Ye Suzhen, Ding Ting, Gao Xin, Zhou Xuezhen, Xiu Meihong, Xia Yu

机构信息

The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

Qingdao Mental Health Center, Qingdao, China.

出版信息

Front Neurosci. 2025 May 20;19:1609156. doi: 10.3389/fnins.2025.1609156. eCollection 2025.

Abstract

OBJECTIVE

Accurate prediction of functional outcomes of stroke remains clinically challenging. The present study was designed to identify baseline biomarkers in demographic, clinical data, and blood biomarkers to predict 3-week outcomes in stroke patients.

METHODS

A prospective cohort of two hundred patients with stroke was recruited at the hospital and followed for 3 weeks. We applied the Barthel Index (BI) to measure the activities of daily living functions in stroke patients. The good outcome or poor outcome groups were classified based on the BI scores. A logistic regression analysis was performed to identify independent predictors, which were subsequently integrated into a nomogram. Discrimination and calibration values of the nomogram were analyzed, and its utility was assessed using decision curve analysis.

RESULTS

Four blood biomarkers, including PT (OR = 1.45, 95% CI: 1.05-2.12), FIB (OR = 1.49, 95% CI: 1.14-2.00), RBG (OR = 1.20, 95% CI: 1.03-1.40), and UA (OR = 1.00, 95% CI: 0.99-1.00) were independent predictors of the 3-week functional outcomes after a stroke. The nomogram incorporating these biomarkers demonstrated moderate discriminative ability (AUC values = 0.714, 95%CI: 0.641-0.786), with satisfactory calibration and positive net benefit on DCA across clinically relevant threshold probabilities.

CONCLUSION

We developed a pragmatic nomogram integrating readily available blood biomarkers to predict 3-week functional outcomes in stroke patients. While validation in larger cohorts is warranted, our findings provide new evidence in early risk stratification and personalized rehabilitation planning, potentially improving post-stroke care efficiency.

摘要

目的

准确预测中风的功能结局在临床上仍然具有挑战性。本研究旨在确定人口统计学、临床数据和血液生物标志物中的基线生物标志物,以预测中风患者3周后的结局。

方法

在医院招募了200名中风患者的前瞻性队列,并随访3周。我们应用巴氏指数(BI)来测量中风患者的日常生活功能活动。根据BI评分将结局良好或不良的组进行分类。进行逻辑回归分析以确定独立预测因素,随后将其整合到列线图中。分析列线图的辨别力和校准值,并使用决策曲线分析评估其效用。

结果

四种血液生物标志物,包括PT(OR = 1.45,95%CI:1.05 - 2.12)、FIB(OR = 1.49,95%CI:1.14 - 2.00)、RBG(OR = 1.20,95%CI:1.03 - 1.40)和UA(OR = 1.00,95%CI:0.99 - 1.00)是中风后3周功能结局的独立预测因素。纳入这些生物标志物的列线图显示出中等辨别能力(AUC值 = 0.714,95%CI:0.641 - 0.786),在校准方面令人满意,并且在临床相关阈值概率的决策曲线分析中具有正净效益。

结论

我们开发了一种实用的列线图,整合了易于获得的血液生物标志物,以预测中风患者3周后的功能结局。虽然需要在更大的队列中进行验证,但我们的发现为早期风险分层和个性化康复计划提供了新证据,可能提高中风后护理效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ce9/12130038/d4d3fe66fcfa/fnins-19-1609156-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验