Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
Department of Intensive Care Unit, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
Sci Rep. 2023 Aug 3;13(1):12580. doi: 10.1038/s41598-023-39781-4.
Stroke is a major healthcare problem worldwide, particularly in the elderly population. Despite limited research on the development of prediction models for mortality in elderly individuals with ischemic stroke, our study aimed to address this knowledge gap. By leveraging data from the Medical Information Mart for Intensive Care IV database, we collected comprehensive raw data pertaining to elderly patients diagnosed with ischemic stroke. Through meticulous screening of clinical variables associated with 28-day mortality, we successfully established a robust nomogram. To assess the performance and clinical utility of our nomogram, various statistical analyses were conducted, including the concordance index, integrated discrimination improvement (IDI), net reclassification index (NRI), calibration curves and decision curve analysis (DCA). Our study comprised a total of 1259 individuals, who were further divided into training (n = 894) and validation (n = 365) cohorts. By identifying several common clinical features, we developed a nomogram that exhibited a concordance index of 0.809 in the training dataset. Notably, our findings demonstrated positive improvements in predictive performance through the IDI and NRI analyses in both cohorts. Furthermore, calibration curves indicated favorable agreement between the predicted and actual incidence of mortality (P > 0.05). DCA curves highlighted the substantial net clinical benefit of our nomogram compared to existing scoring systems used in routine clinical practice. In conclusion, our study successfully constructed and validated a prognostic nomogram, which enables accurate short-term mortality prediction in elderly individuals with ischemic stroke.
中风是全球范围内的一个主要医疗保健问题,特别是在老年人群中。尽管关于预测老年缺血性中风患者死亡率的预测模型的发展的研究有限,但我们的研究旨在解决这一知识空白。通过利用医疗信息集市重症监护 IV 数据库中的数据,我们收集了与诊断为缺血性中风的老年患者相关的全面原始数据。通过对与 28 天死亡率相关的临床变量进行仔细筛选,我们成功建立了一个强大的列线图。为了评估我们的列线图的性能和临床实用性,进行了各种统计分析,包括一致性指数、综合判别改善(IDI)、净重新分类指数(NRI)、校准曲线和决策曲线分析(DCA)。我们的研究共纳入了 1259 人,其中 894 人被分为训练集,365 人被分为验证集。通过识别出一些常见的临床特征,我们开发了一个列线图,在训练数据集中的一致性指数为 0.809。值得注意的是,我们的研究结果表明,通过 IDI 和 NRI 分析,在两个队列中都有积极的预测性能提高。此外,校准曲线表明预测和实际死亡率之间存在良好的一致性(P>0.05)。DCA 曲线突出了我们的列线图与常规临床实践中使用的现有评分系统相比具有显著的净临床获益。总之,我们的研究成功地构建和验证了一个预后列线图,能够准确预测老年缺血性中风患者的短期死亡率。