Suppr超能文献

重症监护病房心脏骤停患者院内死亡风险预测模型:一项基于集成模型的多中心回顾性队列研究

Prediction model of in-hospital mortality risk in intensive care unit patients with cardiac arrest: a multicenter retrospective cohort study based on an ensemble model.

作者信息

Liu Li, Lai Wei-Wei, Li Bo-Wen, Wang Shu-Hang, Yu Mu-Ming, Liu Yan-Cun, Chai Yan-Fen

机构信息

Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, China.

College of Environmental Science and Engineering, Nankai University, Tianjin, China.

出版信息

Front Cardiovasc Med. 2025 May 20;12:1582636. doi: 10.3389/fcvm.2025.1582636. eCollection 2025.

Abstract

BACKGROUND

In-hospital cardiac arrest (IHCA) is a major adverse event with a high death risk. Machine learning (ML) models of prognosis in cardiac arrest (CA) patients have been established, but there are some interferences in their clinical application. This study developed an ensemble learning (EL) model based on clinical information to predict IHCA patient death risk.

METHODS AND RESULTS

This retrospective cohort study used data from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database and eICU Collaborative Research Database. Patients (age ≥ 18 years) with CA based on the ICD-9/10 code were included. Eight candidate ML models were selected for soft voting ensemble. Features were sequentially eliminated based on feature importance scoring to reduce input complexity without compromising model performance. The final model was externally validated with the MIMIC-IV database and deployed as a web application. Overall, 4,068 patients were included. In the internal validation cohort, the EL model exceeded single ML models with an accuracy of 0.842, precision of 0.830, recall of 0.839, F1 score of 0.835, and AUC of 0.898 and showed better calibration across the spectrum of survival probabilities. Furthermore, there is no obvious decline in the prediction performance of the EL model with the top seven features (HCO , Glasgow Coma Scale, white blood cell count, international normalized ratio, hematocrit, body temperature, and blood urea nitrogen) retained. In external validation, the performance slightly decreased but remained acceptable for deploying a clinically feasible web application.

CONCLUSION

The EL model outperformed single ML models in predicting IHCA patient death risk. The identified seven key features enabled the parsimonious EL model to reliably estimate the death risk.

摘要

背景

院内心脏骤停(IHCA)是一种具有高死亡风险的主要不良事件。已经建立了心脏骤停(CA)患者预后的机器学习(ML)模型,但其临床应用存在一些干扰因素。本研究基于临床信息开发了一种集成学习(EL)模型,以预测IHCA患者的死亡风险。

方法和结果

这项回顾性队列研究使用了重症监护医学信息集市IV(MIMIC-IV)数据库和电子重症监护病房协作研究数据库的数据。纳入基于ICD-9/10编码诊断为CA的患者(年龄≥18岁)。选择八个候选ML模型进行软投票集成。基于特征重要性评分依次消除特征,以降低输入复杂性,同时不影响模型性能。最终模型在MIMIC-IV数据库中进行外部验证,并部署为一个网络应用程序。总共纳入了4068例患者。在内部验证队列中,EL模型在预测准确性、精确率、召回率、F1分数和AUC方面均超过单个ML模型,分别为0.842、0.830、0.839、0.835和0.898,并且在生存概率范围内显示出更好的校准。此外,保留前七个特征(碳酸氢根、格拉斯哥昏迷量表、白细胞计数、国际标准化比值、血细胞比容、体温和血尿素氮)时,EL模型的预测性能没有明显下降。在外部验证中,性能略有下降,但对于部署一个临床可行的网络应用程序来说仍可接受。

结论

在预测IHCA患者死亡风险方面,EL模型优于单个ML模型。所确定的七个关键特征使简约的EL模型能够可靠地估计死亡风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b2a5/12131872/2bf2997d44f0/fcvm-12-1582636-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验