Suppr超能文献

利用希尔伯特-黄变换和小波变换提取的 ECG 特征的多模态融合,结合可解释的视觉转换器和 CNN 模型进行心脏性猝死的早期预测。

Early prediction of sudden cardiac death using multimodal fusion of ECG Features extracted from Hilbert-Huang and wavelet transforms with explainable vision transformer and CNN models.

机构信息

Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India; Centre of Advanced Defence Technology, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.

Department of Electrical and Computer Science Engineering, Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad, Gujarat, 380026, India.

出版信息

Comput Methods Programs Biomed. 2024 Dec;257:108455. doi: 10.1016/j.cmpb.2024.108455. Epub 2024 Oct 11.

Abstract

BACKGROUND AND OBJECTIVE

Sudden cardiac death (SCD) is a critical health issue characterized by the sudden failure of heart function, often caused by ventricular fibrillation (VF). Early prediction of SCD is crucial to enable timely interventions. However, current methods predict SCD only a few minutes before its onset, limiting intervention time. This study aims to develop a deep learning-based model for the early prediction of SCD using electrocardiography (ECG) signals.

METHODS

A multimodal explainable deep learning-based model is developed to analyze ECG signals at discrete intervals ranging from 5 to 30 min before SCD onset. The raw ECG signals, 2D scalograms generated through wavelet transform and 2D Hilbert spectrum generated through Hilbert-Huang transform (HHT) of ECG signals were applied to multiple deep learning algorithms. For raw ECG, a combination of 1D-convolutional neural networks (1D-CNN) and long short-term memory networks were employed for feature extraction and temporal pattern recognition. Besides, to extract and analyze features from scalograms and Hilbert spectra, Vision Transformer (ViT) and 2D-CNN have been used.

RESULTS

The developed model achieved high performance, with accuracy, precision, recall and F1-score of 98.81%, 98.83%, 98.81%, and 98.81% respectively to predict SCD onset 30 min in advance. Further, the proposed model can accurately classify SCD patients and normal controls with 100% accuracy. Thus, the proposed method outperforms the existing state-of-the-art methods.

CONCLUSIONS

The developed model is capable of capturing diverse patterns on ECG signals recorded at multiple discrete time intervals (at 5-minute increments from 5 min to 30 min) prior to SCD onset that could discriminate for SCD. The proposed model significantly improves early SCD prediction, providing a valuable tool for continuous ECG monitoring in high-risk patients.

摘要

背景与目的

心脏性猝死(SCD)是一种以心脏功能突然衰竭为特征的严重健康问题,通常由心室颤动(VF)引起。SCD 的早期预测对于及时干预至关重要。然而,目前的方法只能在 SCD 发作前几分钟预测 SCD,限制了干预时间。本研究旨在使用心电图(ECG)信号开发基于深度学习的 SCD 早期预测模型。

方法

开发了一种基于多模态可解释深度学习的模型,用于在 SCD 发作前 5 至 30 分钟的离散时间间隔分析 ECG 信号。将原始 ECG 信号、通过小波变换生成的 2D 谱图以及通过 Hilbert-Huang 变换(HHT)生成的 2D Hilbert 谱应用于多种深度学习算法。对于原始 ECG,采用 1D 卷积神经网络(1D-CNN)和长短时记忆网络相结合的方法进行特征提取和时间模式识别。此外,为了从谱图和 Hilbert 谱中提取和分析特征,使用了 Vision Transformer(ViT)和 2D-CNN。

结果

所开发的模型表现出了很高的性能,在提前 30 分钟预测 SCD 发作时,其准确率、精确率、召回率和 F1 评分分别达到了 98.81%、98.83%、98.81%和 98.81%。此外,该模型还可以准确地对 SCD 患者和正常对照组进行分类,准确率达到 100%。因此,该方法优于现有的先进方法。

结论

所开发的模型能够在 SCD 发作前的多个离散时间间隔(从 5 分钟到 30 分钟每隔 5 分钟记录一次 ECG 信号)上捕获 ECG 信号中的多种模式,从而区分 SCD。该模型显著提高了 SCD 的早期预测能力,为高危患者的连续 ECG 监测提供了有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验