Suppr超能文献

贝叶斯推断组织异质性用于个体化预测脑胶质瘤生长。

Bayesian Inference of Tissue Heterogeneity for Individualized Prediction of Glioma Growth.

出版信息

IEEE Trans Med Imaging. 2023 Oct;42(10):2865-2875. doi: 10.1109/TMI.2023.3267349. Epub 2023 Oct 2.

Abstract

Reliably predicting the future spread of brain tumors using imaging data and on a subject-specific basis requires quantifying uncertainties in data, biophysical models of tumor growth, and spatial heterogeneity of tumor and host tissue. This work introduces a Bayesian framework to calibrate the two-/three-dimensional spatial distribution of the parameters within a tumor growth model to quantitative magnetic resonance imaging (MRI) data and demonstrates its implementation in a pre-clinical model of glioma. The framework leverages an atlas-based brain segmentation of grey and white matter to establish subject-specific priors and tunable spatial dependencies of the model parameters in each region. Using this framework, the tumor-specific parameters are calibrated from quantitative MRI measurements early in the course of tumor development in four rats and used to predict the spatial development of the tumor at later times. The results suggest that the tumor model, calibrated by animal-specific imaging data at one time point, can accurately predict tumor shapes with a Dice coefficient 0.89. However, the reliability of the predicted volume and shape of tumors strongly relies on the number of earlier imaging time points used for calibrating the model. This study demonstrates, for the first time, the ability to determine the uncertainty in the inferred tissue heterogeneity and the model-predicted tumor shape.

摘要

使用成像数据并基于个体进行可靠地预测脑瘤的未来扩散,需要量化数据、肿瘤生长的生物物理模型以及肿瘤和宿主组织的空间异质性中的不确定性。这项工作介绍了一种贝叶斯框架,可将肿瘤生长模型中的参数的二维/三维空间分布校准到定量磁共振成像 (MRI) 数据,并在神经胶质瘤的临床前模型中展示了其实现。该框架利用基于图谱的灰质和白质脑分割,为每个区域建立特定于个体的先验知识和可调整的模型参数的空间依赖性。使用该框架,可以从四只大鼠肿瘤发展的早期阶段的定量 MRI 测量中校准肿瘤特异性参数,并用于预测以后的肿瘤空间发展。结果表明,通过在一个时间点使用动物特异性成像数据进行校准的肿瘤模型,可以准确地预测具有 0.89 的 Dice 系数的肿瘤形状。然而,预测肿瘤体积和形状的可靠性强烈依赖于用于校准模型的早期成像时间点的数量。这项研究首次证明了确定推断出的组织异质性和模型预测的肿瘤形状的不确定性的能力。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验