Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6) and JARA BRAIN Institute I, Jülich Research Centre, Jülich, Germany.
Institute for Theoretical Solid State Physics, RWTH Aachen University, 52074 Aachen, Germany.
Phys Rev E. 2020 Apr;101(4-1):042124. doi: 10.1103/PhysRevE.101.042124.
Neural dynamics is often investigated with tools from bifurcation theory. However, many neuron models are stochastic, mimicking fluctuations in the input from unknown parts of the brain or the spiking nature of signals. Noise changes the dynamics with respect to the deterministic model; in particular classical bifurcation theory cannot be applied. We formulate the stochastic neuron dynamics in the Martin-Siggia-Rose de Dominicis-Janssen (MSRDJ) formalism and present the fluctuation expansion of the effective action and the functional renormalization group (fRG) as two systematic ways to incorporate corrections to the mean dynamics and time-dependent statistics due to fluctuations in the presence of nonlinear neuronal gain. To formulate self-consistency equations, we derive a fundamental link between the effective action in the Onsager-Machlup (OM) formalism, which allows the study of phase transitions, and the MSRDJ effective action, which is computationally advantageous. These results in particular allow the derivation of an OM effective action for systems with non-Gaussian noise. This approach naturally leads to effective deterministic equations for the first moment of the stochastic system; they explain how nonlinearities and noise cooperate to produce memory effects. Moreover, the MSRDJ formulation yields an effective linear system that has identical power spectra and linear response. Starting from the better known loopwise approximation, we then discuss the use of the fRG as a method to obtain self-consistency beyond the mean. We present a new efficient truncation scheme for the hierarchy of flow equations for the vertex functions by adapting the Blaizot, Méndez, and Wschebor approximation from the derivative expansion to the vertex expansion. The methods are presented by means of the simplest possible example of a stochastic differential equation that has generic features of neuronal dynamics.
神经动力学通常使用分岔理论的工具进行研究。然而,许多神经元模型是随机的,模拟了来自大脑未知部分的输入波动或信号的尖峰性质。噪声改变了相对于确定性模型的动力学;特别是经典分岔理论不能适用。我们在 Martin-Siggia-Rose de Dominicis-Janssen (MSRDJ) 形式主义中对随机神经元动力学进行了形式化,并提出了有效作用的涨落展开和功能重整化群 (fRG),作为两种系统的方法,以纳入由于非线性神经元增益存在而导致的对平均动力学和时变统计的修正。为了制定自洽方程,我们推导出了 Onsager-Machlup (OM) 形式主义中的有效作用和 MSRDJ 有效作用之间的基本联系,这使得可以研究相变,并且 MSRDJ 有效作用在计算上是有利的。这些结果特别允许为具有非高斯噪声的系统推导 OM 有效作用。这种方法自然导致了随机系统的第一矩的有效确定性方程;它们解释了非线性和噪声如何合作产生记忆效应。此外,MSRDJ 形式主义产生了具有相同功率谱和线性响应的有效线性系统。从更为人所知的循环逼近开始,我们然后讨论了使用 fRG 作为超越平均值获得自洽的方法。我们通过将 Blaizot、Méndez 和 Wschebor 从导数展开到顶点展开的近似从导数扩展到顶点扩展,为顶点函数的流方程的层次结构提出了一种新的有效截断方案。这些方法通过具有神经元动力学一般特征的最简单随机微分方程示例来呈现。