Benjamin Philip L, Gerhards Luca, Solov'yov Ilia A, Hore P J
Department of Chemistry, University of Oxford, Oxford OX1 3QZ, U.K.
Institute of Physics, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky Str. 9-11, 26129 Oldenburg, Germany.
J Phys Chem B. 2025 Jun 19;129(24):5937-5947. doi: 10.1021/acs.jpcb.5c01187. Epub 2025 Jun 4.
Light-induced radical pairs in cryptochrome proteins located in the retina are thought to be the receptors at the heart of the magnetic compass sense of migratory songbirds. Reliable simulations of the performance of such sensors face several fundamental challenges. The quantum spin dynamics of large spin systems must be modeled for periods in excess of a microsecond including realistic local magnetic interactions that fluctuate on a picosecond to microsecond time scale as a result of thermal motion. Here we employ newly developed computational methods that combine explicitly time-dependent internal magnetic interactions, obtained from molecular dynamics simulations and electronic structure calculations, with efficiently and accurately modeled spin dynamics of multinuclear electron-nuclear spin systems. We identify the range of frequencies of molecular motions that are expected to have the greatest effects on the sensitivity of the proposed compass to the direction of an Earth-strength magnetic field and obtain new insights into the potential enhancements in detection sensitivity afforded by thermal modulations of electron-nuclear hyperfine interactions.
位于视网膜中的隐花色素蛋白中的光诱导自由基对被认为是候鸟磁罗盘感测核心的受体。对此类传感器性能进行可靠模拟面临若干基本挑战。必须对大自旋系统的量子自旋动力学进行超过微秒时长的建模,包括由于热运动而在皮秒到微秒时间尺度上波动的实际局部磁相互作用。在此,我们采用新开发的计算方法,将从分子动力学模拟和电子结构计算中获得的明确依赖时间的内部磁相互作用,与多核电子 - 核自旋系统的高效且准确建模的自旋动力学相结合。我们确定了预期对所提议罗盘对地球强度磁场方向的灵敏度影响最大的分子运动频率范围,并获得了关于电子 - 核超精细相互作用的热调制所带来的检测灵敏度潜在增强的新见解。