Castro-Medina Roberto, Gabriel Villarreal-Cervantes Miguel, Germán Corona-Ramírez Leonel, Flores-Caballero Geovanni, Rodríguez-Molina Alejandro, Silva-Ortigoza Ramón, Darío Cuervo-Pinto Víctor, Abraham Palma-Huerta Andrés
Escuela Superior de Ingeniería Mecánica y Eléctrica - Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City, Mexico.
Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional, Mexico City, Mexico.
PLoS One. 2025 Jun 4;20(6):e0325168. doi: 10.1371/journal.pone.0325168. eCollection 2025.
The accurate modeling of dynamic systems, particularly robotic ones, is crucial in the industry. It enables simulation-based approaches that facilitate various tasks without requiring the physical system, thereby reducing risks and costs. These approaches range from model-in-the-loop (MiL), where a simulated model of the real plant is used for controller design, to hardware-in-the-loop (HiL), which provides more realistic simulations on specialized real-time hardware. Among these, MiL is widely adopted due to its simplicity and effectiveness in developing control strategies. However, to fully leverage the advantages of MiL, developing a robust and accurate system model parameterization methodology is essential. This methodology should be adaptable to a wide range of applications, adopt a holistic approach, and balance the cost-benefit trade-offs in model characteristics. Achieving this, however, introduces additional challenges related to system complexity and the inherent properties of the model. To address these challenges, this work proposes a model parameterization approach for robotic systems using bio-inspired optimization to develop accurate and practical models for system design. The approach formulates an optimization problem to determine the dynamic model parameters of a robot, ensuring its behavior closely resembles that of the real system. Due to the complexity of this problem, bio-inspired optimization techniques are particularly well-suited. The proposed method is validated using a theoretical, non-conservative model of a three-degree-of-freedom serial robot. The dynamic parameters of its three links were identified to effectively generalize the real system. To solve the optimization problem, three bio-inspired algorithms were employed: the genetic algorithm, particle swarm optimization, and differential evolution. The optimal parameterization obtained for the robot model demonstrated the effectiveness of the proposed approach in a MiL simulation environment, achieving an overall correlation of 0.9019 in the experiments. This correlation highlights the model's ability to predict the robot's behavior accurately. Additionally, the methodology's efficacy was further validated in another electromechanical system, the reaction force-sensing series elastic actuator, yielding a correlation of 0.8379 in the resulting model.
动态系统,尤其是机器人系统的精确建模在工业中至关重要。它使基于仿真的方法成为可能,这些方法无需物理系统就能促进各种任务,从而降低风险和成本。这些方法涵盖从模型在环(MiL),即使用真实工厂的仿真模型进行控制器设计,到硬件在环(HiL),后者在专用实时硬件上提供更逼真的仿真。其中,MiL因其在开发控制策略方面的简单性和有效性而被广泛采用。然而,要充分利用MiL的优势,开发一种强大且准确的系统模型参数化方法至关重要。这种方法应适用于广泛的应用,采用整体方法,并在模型特性中平衡成本效益权衡。然而,实现这一点会带来与系统复杂性和模型固有特性相关的额外挑战。为应对这些挑战,这项工作提出了一种用于机器人系统的模型参数化方法,该方法利用生物启发式优化来开发用于系统设计的准确实用模型。该方法制定了一个优化问题来确定机器人的动态模型参数,确保其行为与真实系统的行为非常相似。由于这个问题的复杂性,生物启发式优化技术特别适用。所提出的方法使用一个三自由度串联机器人的理论非保守模型进行了验证。确定了其三个连杆的动态参数以有效地概括真实系统。为了解决优化问题,采用了三种生物启发式算法:遗传算法、粒子群优化算法和差分进化算法。在MiL仿真环境中,为机器人模型获得的最优参数化证明了所提出方法的有效性,在实验中实现了0.9019的整体相关性。这种相关性突出了模型准确预测机器人行为的能力。此外,该方法的有效性在另一个机电系统——反应力传感串联弹性执行器中得到了进一步验证,在所得模型中产生了0.8379的相关性。