Suppr超能文献

数学建模与非线性双边多值随机积分方程

Mathematical modeling and nonlinear bilateral multivalued stochastic integral equations.

作者信息

Malinowski Marek T

机构信息

Department of Applied Mathematics, Tadeusz Kościuszko Cracow University of Technology, Kraków, Poland.

出版信息

PLoS One. 2025 Jun 4;20(6):e0323411. doi: 10.1371/journal.pone.0323411. eCollection 2025.

Abstract

In this paper, we begin our study by exploring a hypothetical model of stochastic growth of a population, using a single-valued stochastic integral equation that incorporates the control of feeding and harvest. Taking into account the inaccuracies and uncertainties in the measurements, we are led to a nonlinear bilateral multivalued stochastic integral equation that contains multivalued stochastic integrals on both sides of the equation. Due to the possibility of absence of an element opposite to a fixed set, such an equation cannot be reduced to classical unilateral notation with the sign of sum of sets only on one side. The fundamental question arises: Is there a solution to the equation under consideration, and is it the only one? By imposing on the coefficients of the equation the condition of satisfying a certain integral inequality, we prove the existence and uniqueness of solution of the considered equation. The result is preceded by a few lemmas with the sequence of approximate solutions. We also show that solutions have the property of stability. Finally, it has been demonstrated that the results obtained can be applied to establish corresponding theorems for deterministic bilateral multivalued integral equations.

摘要

在本文中,我们通过探索一个种群随机增长的假设模型来开始我们的研究,使用一个包含喂养和收获控制的单值随机积分方程。考虑到测量中的不准确性和不确定性,我们得到了一个非线性双边多值随机积分方程,该方程两边都包含多值随机积分。由于可能不存在与固定集相对的元素,这样的方程不能简化为仅在一侧有集合和符号的经典单边记法。于是出现了一个基本问题:所考虑的方程有解吗,并且解是唯一的吗?通过给方程的系数施加满足某个积分不等式的条件,我们证明了所考虑方程解的存在性和唯一性。在这个结果之前有几个关于近似解序列的引理。我们还表明解具有稳定性。最后,已经证明所得到的结果可以应用于为确定性双边多值积分方程建立相应的定理。

相似文献

3
Fixed points of multivalued convex contractions with application.多值凸压缩映射的不动点及其应用
PLoS One. 2025 May 12;20(5):e0321860. doi: 10.1371/journal.pone.0321860. eCollection 2025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验