Suppr超能文献

一种基于特征模式分解和减法平均优化器的新型滚动轴承故障检测方法。

A novel rolling bearing fault detect method based on feature mode decomposition and subtraction-average-based optimizer.

作者信息

Xi Wei, Qiao Fuyu, Zhang Jingjing

机构信息

School of Electrical Engineering, Hebei University of Architecture, Zhangjiakou, Hebei, China.

出版信息

PLoS One. 2025 Jun 4;20(6):e0324739. doi: 10.1371/journal.pone.0324739. eCollection 2025.

Abstract

Large rotating machinery is an essential piece of equipment in modern industry, playing a critical role in industrial production. However, the complex working environment complicates the extraction of fault-related information. This paper proposes a fault diagnosis method based on the subtraction-average-based optimizer (SABO) and feature mode decomposition (FMD). To address the issue that FMD's decomposition performance is highly sensitive to its parameter settings, this paper uses the minimum envelope entropy as the fitness function and employs the SABO algorithm to adaptively optimize FMD's two key parameters: the mode number (n) and filter length (L). Additionally, for the intrinsic mode functions (IMFs) obtained from FMD decomposition, the maximum kurtosis value is used to filter IMFs containing fault information, and envelope spectrum analysis is applied to achieve fault diagnosis. When applied to experimental signals of rolling bearing faults, the results demonstrate that the proposed method can extract the amplitude of the fault characteristic frequency from the envelope spectrum and accurately diagnose the fault type. Compared with methods based on empirical mode decomposition (EMD) and fixed-parameter FMD, the proposed method provides a more prominent representation of the fault characteristic frequency and its harmonics in the envelope spectrum. Furthermore, the proposed method achieves a more prominent representation of the fault eigenfrequency in the envelope spectrum and a lower error rate. The proposed method demonstrates significant potential and value for rolling bearing fault diagnosis.

摘要

大型旋转机械是现代工业中不可或缺的设备,在工业生产中发挥着关键作用。然而,复杂的工作环境使得故障相关信息的提取变得复杂。本文提出了一种基于减法平均优化器(SABO)和特征模式分解(FMD)的故障诊断方法。为了解决FMD分解性能对其参数设置高度敏感的问题,本文将最小包络熵作为适应度函数,并采用SABO算法自适应优化FMD的两个关键参数:模式数(n)和滤波器长度(L)。此外,对于从FMD分解得到的本征模态函数(IMF),使用最大峭度值来筛选包含故障信息的IMF,并应用包络谱分析来实现故障诊断。将该方法应用于滚动轴承故障的实验信号时,结果表明所提方法能够从包络谱中提取故障特征频率的幅值,并准确诊断故障类型。与基于经验模态分解(EMD)和固定参数FMD的方法相比,所提方法在包络谱中对故障特征频率及其谐波的表示更为突出。此外,所提方法在包络谱中对故障特征频率的表示更为突出,且错误率更低。所提方法在滚动轴承故障诊断中具有显著的潜力和价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e46c/12136367/dadb4ee4ffca/pone.0324739.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验