LeDesma Catie, Mehling Kendall, Holland Murray
JILA, 440 UCB, University of Colorado Boulder, Boulder, CO 80309-0440, USA.
Department of Physics, 390 UCB, University of Colorado Boulder, Boulder, CO 80309-0390, USA.
Sci Adv. 2025 Jun 6;11(23):eadt7480. doi: 10.1126/sciadv.adt7480. Epub 2025 Jun 4.
Two kinds of multidimensional atom interferometers are demonstrated that are capable of measuring both the magnitude and direction of applied inertial forces. These interferometers, built from ultracold Bose-Einstein condensed rubidium atoms, use an original design that operates entirely within the Bloch bands of an optical lattice. Through time-dependent lattice position control, we realize Bloch oscillations in two dimensions and a vector atomic Michelson interferometer. Fits to the observed Bloch oscillations demonstrate the measurement of an applied acceleration of 2 along two axes, where is Earth's gravitational acceleration. For the Michelson interferometer, we perform Bayesian inferencing from a 49-channel output by repeating experiments for two-axis accelerations and demonstrate vector parameter estimation. Accelerations can be measured from single experimental runs and do not require repeated shots to construct a fringe. The performance of our device is near the quantum limit for the interferometer size and quantum detection efficiency of the atoms.
展示了两种能够测量所施加惯性力的大小和方向的多维原子干涉仪。这些干涉仪由超冷玻色 - 爱因斯坦凝聚铷原子构成,采用了一种完全在光学晶格的布洛赫能带内运行的原始设计。通过随时间变化的晶格位置控制,我们实现了二维的布洛赫振荡和一个矢量原子迈克尔逊干涉仪。对观测到的布洛赫振荡的拟合表明,沿两个轴测量到了大小为2 的所施加加速度,其中 是地球引力加速度。对于迈克尔逊干涉仪,我们通过对两轴加速度重复实验,从49通道输出进行贝叶斯推理,并证明了矢量参数估计。加速度可以从单次实验运行中测量得到,并且不需要重复测量来构建条纹。我们装置的性能在干涉仪尺寸和原子量子探测效率方面接近量子极限。