Saywell Jack C, Carey Max S, Light Philip S, Szigeti Stuart S, Milne Alistair R, Gill Karandeep S, Goh Matthew L, Perunicic Viktor S, Wilson Nathanial M, Macrae Calum D, Rischka Alexander, Everitt Patrick J, Robins Nicholas P, Anderson Russell P, Hush Michael R, Biercuk Michael J
Q-CTRL, Sydney, NSW, Australia.
Nat Commun. 2023 Nov 22;14(1):7626. doi: 10.1038/s41467-023-43374-0.
Atom-interferometric quantum sensors could revolutionize navigation, civil engineering, and Earth observation. However, operation in real-world environments is challenging due to external interference, platform noise, and constraints on size, weight, and power. Here we experimentally demonstrate that tailored light pulses designed using robust control techniques mitigate significant error sources in an atom-interferometric accelerometer. To mimic the effect of unpredictable lateral platform motion, we apply laser-intensity noise that varies up to 20% from pulse-to-pulse. Our robust control solution maintains performant sensing, while the utility of conventional pulses collapses. By measuring local gravity, we show that our robust pulses preserve interferometer scale factor and improve measurement precision by 10× in the presence of this noise. We further validate these enhancements by measuring applied accelerations over a 200 μg range up to 21× more precisely at the highest applied noise level. Our demonstration provides a pathway to improved atom-interferometric inertial sensing in real-world settings.
原子干涉量子传感器可能会给导航、土木工程和地球观测带来变革。然而,由于外部干扰、平台噪声以及尺寸、重量和功率方面的限制,在现实环境中运行具有挑战性。在此,我们通过实验证明,使用鲁棒控制技术设计的定制光脉冲可减轻原子干涉加速度计中的重大误差源。为模拟不可预测的横向平台运动的影响,我们施加脉冲间变化高达20%的激光强度噪声。我们的鲁棒控制解决方案保持了高性能传感,而传统脉冲的效用则崩溃。通过测量局部重力,我们表明,在存在这种噪声的情况下,我们的鲁棒脉冲保留了干涉仪比例因子,并将测量精度提高了10倍。我们通过在高达21倍的最高施加噪声水平下更精确地测量200μg范围内的施加加速度,进一步验证了这些增强效果。我们的演示为在现实环境中改进原子干涉惯性传感提供了一条途径。