Zane Linda K, Yee Laura M, Chang Ting-Chia, Sklar Jeffrey, Yang Guangxiao, Wen Jia Di, Li Peining, Harrington Robin, Sims David J, Harper Kneshay, Trent Jeffrey M, LoBello Janine R, Szelinger Szabolcs, Benson Kasey, Zeng Jia, Poorman Kelsey, Xu Danbin, Frampton Garrett M, Pavlick Dean C, Miller Vincent A, Tandon Bevan, Swat Wojciech, Weiss Lawrence, Funari Vincent Anthony, Conroy Jeffrey M, Prescott James L, Chandra Pranil K, Ma Charles, Champion Kristen J, Baschkopf Gregory X, Fesko Yuri A, Freitas Tracey Allen K, Tomlins Scott A, Hovelson Daniel H, White Kevin, Sorrells Shelly, Tell Robert, Beaubier Nike, King David, Li Lei, Kelly Kevin, Uvalic Jasmina, Meyers Bridgette, Kolhe Ravindra, Lindeman Neal I, Baltay Michele, Sholl Lynette M, Lopategui Jean, Vail Eric, Zhang Wenjuan, Telatar Milhan, Afkhami Michelle, Hsiao Susan J, Mansukhani Mahesh M, Adams Emily, Jiang LiQun, Aldape Kenneth D, Raffeld Mark, Xi Liqiang, Stehr Henning, Segal Jeremy P, Aisner Dara L, Davies Kurtis D, Brown Noah A, Livingston Robert J, Konnick Eric Q, Song Wei, Solomon James P, Walther Zenta, McShane Lisa M, Harris Lyndsay N, Chen Alice P, Tsongalis Gregory J, Hamilton Stanley R, Flaherty Keith T, O'Dwyer Peter J, Conley Barbara A, Patton David R, Iafrate A John, Williams P Mickey, Tricoli James V, Karlovich Chris
National Cancer Institute, Rockville, MD, United States.
National Cancer Institute, Bethesda, United States.
Clin Cancer Res. 2025 Jun 4. doi: 10.1158/1078-0432.CCR-24-2188.
NCI selected a network of CLIA-certified laboratories performing routine NGS tumor testing to identify patients for the NCI-MATCH trial. This large network provided a unique opportunity to compare variant detection and reporting between a wide range of testing platforms.
Twenty-eight NGS assays from 26 laboratories within the NCI-MATCH network, including the NCI-MATCH central laboratory (CL) and 11 commercial and 14 academic designated laboratories (DL), were used for this study. DNA from 8 cell lines and 2 clinical samples were sequenced. Pairwise comparisons in variant detection and reporting between each DL and CL were performed for SNV, Indel, and CNV variant classes.
We observed high concordance in variant detection between CL and DL for SNVs and Indels (Average Positive Agreement, APA>95.4% for all pairwise comparisons) but lower concordance for variant reporting after analysis pipeline filtering. We observed much higher agreement between CL and assays using amplification as the target enrichment method (84.2%<APA≤95.7%, average APA=88.7%) than with other assays using hybridization capture (69.7%<APA≤93.8%, average APA=77.4%) due to blacklisting of actionable variants in low complexity regions. For CNV reporting, we observed high agreement (APA>82%) except between CL and 2 assays (APA=76.9 and 71.4%) due to differences in estimation of copy numbers. Notably, for all variants, differences in variant interpretation also contributed to reporting discrepancies.
This study indicates that different NGS tumor profiling tests currently in widespread clinical use achieve high concordance between assays in variant detection. For variant reporting, observed discrepancies are mainly introduced during the bioinformatics analysis.
美国国立癌症研究所(NCI)选择了一个经临床实验室改进修正案(CLIA)认证的实验室网络,这些实验室进行常规的下一代测序(NGS)肿瘤检测,以确定参与NCI-MATCH试验的患者。这个大型网络提供了一个独特的机会,可以比较各种检测平台之间的变异检测和报告情况。
本研究使用了NCI-MATCH网络中26个实验室的28种NGS检测方法,包括NCI-MATCH中央实验室(CL)以及11个商业指定实验室和14个学术指定实验室(DL)。对8种细胞系和2份临床样本的DNA进行了测序。针对单核苷酸变异(SNV)、插入缺失(Indel)和拷贝数变异(CNV)变异类别,对每个DL和CL之间的变异检测和报告进行了成对比较。
我们观察到CL和DL在SNV和Indel的变异检测方面具有高度一致性(所有成对比较的平均阳性一致性,APA>95.4%),但在分析流程过滤后的变异报告方面一致性较低。我们观察到,与使用杂交捕获的其他检测方法(69.7%<APA≤93.8%,平均APA=77.4%)相比,CL与使用扩增作为目标富集方法的检测方法之间的一致性要高得多(84.2%<APA≤95.7%,平均APA=88.7%),这是由于低复杂性区域中可操作变异被列入黑名单。对于CNV报告,我们观察到高度一致性(APA>82%),但CL与2种检测方法之间除外(APA=76.9和%),这是由于拷贝数估计存在差异。值得注意的是,对于所有变异,变异解释的差异也导致了报告差异。
本研究表明,目前广泛应用于临床的不同NGS肿瘤分析检测方法在变异检测方面具有高度一致性。对于变异报告,观察到的差异主要是在生物信息学分析过程中引入的。