Suppr超能文献

地理、时间和新冠疫情数据集偏移下的死亡率预测性能:全球开源疾病严重程度评分模型的外部验证

Mortality Prediction Performance Under Geographical, Temporal, and COVID-19 Pandemic Dataset Shift: External Validation of the Global Open-Source Severity of Illness Score Model.

作者信息

Tohyama Takeshi, McCoy Liam G, Ishii Euma, Sood Sahil, Raffa Jesse, Kinoshita Takahiro, Celi Leo Anthony, Hashimoto Satoru

机构信息

Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA.

School of Health Sciences, International University of Health and Welfare, Fukuoka, Japan.

出版信息

Crit Care Explor. 2025 Jun 4;7(6):e1275. doi: 10.1097/CCE.0000000000001275. eCollection 2025 Jun 1.

Abstract

BACKGROUND

Risk-prediction models are widely used for quality of care evaluations, resource management, and patient stratification in research. While established models have long been used for risk prediction, healthcare has evolved significantly, and the optimal model must be selected for evaluation in line with contemporary healthcare settings and regional considerations.

OBJECTIVES

To evaluate the geographic and temporal generalizability of the models for mortality prediction in ICUs through external validation in Japan.

DERIVATION COHORT

Not applicable.

VALIDATION COHORT

The care Japanese Intensive care PAtient Database from 2015 to 2022.

PREDICTION MODEL

The Global Open-Source Severity of Illness Score (GOSSIS-1), a modern risk model utilizing machine learning approaches, was compared with conventional models-the Acute Physiology and Chronic Health Evaluation (APACHE-II and APACHE-III)-and a locally calibrated model, the Japan Risk of Death (JROD).

RESULTS

Despite the demographic and clinical differences of the validation cohort, GOSSIS-1 maintained strong discrimination, achieving an area under the curve of 0.908, comparable to APACHE-III (0.908) and JROD (0.910). It also exhibited superior calibration, achieving a standardized mortality ratio (SMR) of 0.89 (95% CI, 0.88-0.90), significantly outperforming APACHE-II (SMR, 0.39; 95% CI, 0.39-0.40) and APACHE-III (SMR, 0.46; 95% CI, 0.46-0.47), and demonstrating a performance close to that of JROD (SMR, 0.97; 95% CI, 0.96-0.99). However, performance varied significantly across disease categories, with suboptimal calibration for neurologic conditions and trauma. While the model showed temporal stability from 2015 to 2019, performance deteriorated during the COVID-19 pandemic, broadly reducing performance across disease categories in 2020. This trend was particularly pronounced in GOSSIS compared with APACHE-III.

CONCLUSIONS

GOSSIS-1 demonstrates robust discrimination despite substantial geographic dataset shift but shows important calibration variations across disease categories. In particular, in a complex model like GOSSIS-1, stresses on the health system, such as a pandemic, can manifest changes in model calibration.

摘要

背景

风险预测模型广泛应用于医疗质量评估、资源管理以及研究中的患者分层。虽然既定模型长期以来一直用于风险预测,但医疗保健领域已发生显著演变,必须选择最佳模型以根据当代医疗环境和地区因素进行评估。

目的

通过在日本进行外部验证,评估重症监护病房(ICU)死亡率预测模型的地理和时间可推广性。

推导队列

不适用。

验证队列

2015年至2022年的日本重症监护患者护理数据库。

预测模型

将全球开源疾病严重程度评分(GOSSIS-1,一种利用机器学习方法的现代风险模型)与传统模型(急性生理与慢性健康评估(APACHE-II和APACHE-III))以及局部校准模型日本死亡风险(JROD)进行比较。

结果

尽管验证队列存在人口统计学和临床差异,但GOSSIS-1保持了较强的区分能力,曲线下面积达到0.908,与APACHE-III(0.908)和JROD(0.910)相当。它还表现出更好的校准效果,标准化死亡率(SMR)为0.89(95%CI,0.88 - 0.90),显著优于APACHE-II(SMR,0.39;95%CI,0.39 - 0.40)和APACHE-III(SMR,0.46;95%CI,0.46 - 0.47),且性能接近JROD(SMR,0.97;95%CI,0.96 - 0.99)。然而,不同疾病类别的性能差异显著,神经系统疾病和创伤的校准效果欠佳。虽然该模型在2015年至2019年期间表现出时间稳定性,但在新冠疫情期间性能下降,2020年各类疾病的性能普遍降低。与APACHE-III相比,这种趋势在GOSSIS中尤为明显。

结论

尽管地理数据集存在显著变化,但GOSSIS-1仍表现出强大的区分能力,但不同疾病类别的校准存在重要差异。特别是在像GOSSIS-1这样的复杂模型中,诸如大流行等对卫生系统的压力可能会导致模型校准发生变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7357/12140679/8aa208a40c17/cc9-7-e1275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验