Suppr超能文献

通过机器学习减轻新一代对地静止卫星监测地面一氧化氮时缺失数据引起的偏差。

Mitigating bias induced by missing data in new-generation geostationary satellite monitoring of ground-level NO via machine learning.

作者信息

Ahmad Naveed, Lin Changqing, Zhang Tianshu, Li Zhiyuan, Kim Jhoon, Guo Cui

机构信息

Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230000, China; Institute of Environment, Hefei Comprehensive National Science Center, Hefei, 230000, China.

出版信息

Environ Pollut. 2025 Sep 15;381:126592. doi: 10.1016/j.envpol.2025.126592. Epub 2025 Jun 2.

Abstract

The Geostationary Environment Monitoring Spectrometer (GEMS) has revolutionized air quality monitoring with hourly resolution from geostationary Earth orbit (GEO). However, satellite-derived air quality data often face limitations and biases due to missing data. Given the growing role of GEO environmental satellites, it is crucial to evaluate these limitations and correct biases in detail on an hourly basis. Based on GEMS measurements, this study assesses the potential for improving data availability and mitigating bias in monitoring ground-level nitrogen dioxide (NO) concentrations in eastern China through a machine learning framework that integrates gap-filling and column-to-ground conversion processes. The results indicate that the gap-filling process significantly enhanced data availability from 10 to 50 % to full coverage across China. Furthermore, the seamless data substantially reduced bias in estimating the annual mean of ground-level NO concentrations, eliminating a significant underestimation of over 3.0 μg/m in 36.3 %, 47.2 %, and 63.6 % of the area for 8 a.m., 2 p.m., and 3 p.m., respectively. These findings enhance our understanding of the biases induced by missing data in new-generation GEO satellite measurements and highlight the need for seamless spatio-temporal mapping of air quality to address these limitations.

摘要

地球静止环境监测光谱仪(GEMS)通过地球静止轨道(GEO)实现每小时分辨率的空气质量监测,带来了变革。然而,由于数据缺失,卫星衍生的空气质量数据常常面临局限性和偏差。鉴于GEO环境卫星的作用日益增强,详细评估这些局限性并逐小时纠正偏差至关重要。基于GEMS测量数据,本研究通过一个集成了填补数据空白和柱面到地面转换过程的机器学习框架,评估了在中国东部监测地面二氧化氮(NO)浓度时提高数据可用性和减轻偏差的潜力。结果表明,填补数据空白的过程显著提高了数据可用性,从10%至50%提升至中国全境的全覆盖。此外,无缝数据大幅减少了估算地面NO浓度年均值时的偏差,分别消除了上午8点、下午2点和下午3点时36.3%、47.2%和63.6%区域内超过3.0μg/m的显著低估。这些发现增进了我们对新一代GEO卫星测量中数据缺失所引发偏差的理解,并突出了进行空气质量无缝时空映射以解决这些局限性的必要性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验