Suppr超能文献

广谱靶向二代测序在重症监护病房患者下呼吸道感染中的应用:一项前瞻性观察研究。

Performance of broad-spectrum targeted next-generation sequencing in lower respiratory tract infections in ICU patients: a prospective observational study.

作者信息

Chen Chuanxi, Wang Ruizhi, Wei Bilin, Chen Yili, Gu Dejian, Xu Jiangze, Zheng Huifang, Xu Zimeng, Ding Linfang, Chen Xiaonan, Xiao Lihua, Bai Liping, Liu Zimeng, Liu Yongjun, Chen Minying, Chen Peisong, Guan Xiangdong, Wu Jianfeng

机构信息

Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-Sen University, No.58 Zhongshan Er Road, Guangzhou, Guangdong, China.

Guangdong Clinical Research Center for Critical Care Medicine, Guangzhou, Guangdong, China.

出版信息

Crit Care. 2025 Jun 4;29(1):226. doi: 10.1186/s13054-025-05470-z.

Abstract

PURPOSE

Targeted next-generation sequencing (tNGS) has emerged as an advanced diagnostic technique. While tNGS is increasingly recognized as a valuable tool for detecting infections, its most relevant clinical indications remain underdefined. This study aimed to evaluate the clinical utility of tNGS for lower respiratory tract infections (LRTIs).

METHODS

We conducted a prospective, observational study to evaluate the clinical diagnostic value of broad-spectrum targeted Next-Generation Sequencing (bstNGS) covering 1872 microorganisms in critically ill patients with LRTIs. We compared the microbial detection performance of bstNGS, mNGS, and traditional culture methods in bronchoalveolar lavage fluid (BALF). Additionally, we used the odds ratio (OR) from multiple logistic regression to assess the impact of relevant clinical variables on the detection of pathogens by bstNGS. We also examined the correlation between bstNGS pathogen detection results and clinical outcomes.

RESULTS

Between August 23, 2023, and April 24, 2024, samples from 150 patients were analyzed. bstNGS detected 96.33% and 91.15% of the microorganisms discovered by mNGS and culture respectively, and was capable of identifying microorganisms with even lower loads. According to the diagnostic criteria, bstNGS, mNGS, and culture methods detected pathogens in 87.33%, 82.00%, and 46.00% of the samples respectively. Moreover, the NGS methods demonstrated a stronger pathogen detection ability compared to culture (p < 0.05). Further comparing the diagnostic performance of the three methods, bstNGS exhibited higher diagnostic accuracy than both mNGS (90.67% vs 86.00%, p < 0.05) and culture (90.67% vs 49.33%, p < 0.0001). Multivariate analysis revealed that immunocompromise was associated with a lower efficiency of pathogen detection by bstNGS (p = 0.04), while other included clinical features had no significant correlation with bstNGS detection. Additionally, compared with patients in whom no pathogen was detected, patients in whom a pathogen was detected by bstNGS were associated with better outcomes of antibiotic treatment (89.68% vs. 62.50%; OR 7.53, 95% CI 1.41-45.30; p = 0.02).

CONCLUSION

This study shows the effectiveness of bstNGS in detecting pathogens of LRTIs, as well as its value as a potential auxiliary diagnostic method in the ICU.

摘要

目的

靶向二代测序(tNGS)已成为一种先进的诊断技术。虽然tNGS越来越被认为是检测感染的有价值工具,但其最相关的临床应用指征仍不明确。本研究旨在评估tNGS在诊断下呼吸道感染(LRTIs)中的临床应用价值。

方法

我们进行了一项前瞻性观察性研究,以评估覆盖1872种微生物的广谱靶向二代测序(bstNGS)在重症LRTIs患者中的临床诊断价值。我们比较了bstNGS、宏基因组二代测序(mNGS)和传统培养方法在支气管肺泡灌洗(BALF)液中的微生物检测性能。此外,我们使用多元逻辑回归的比值比(OR)来评估相关临床变量对bstNGS检测病原体的影响。我们还研究了bstNGS病原体检测结果与临床结局之间的相关性。

结果

在2023年8月23日至2024年4月24日期间,对150例患者的样本进行了分析。bstNGS分别检测到mNGS和培养法发现的微生物的96.33%和91.15%,并且能够识别载量更低的微生物。根据诊断标准,bstNGS、mNGS和培养法分别在87.33%、82.00%和46.00%的样本中检测到病原体。此外,与培养法相比,二代测序方法显示出更强的病原体检测能力(p < 0.05)。进一步比较三种方法的诊断性能,bstNGS的诊断准确性高于mNGS(90.67%对86.00%,p < 0.05)和培养法(90.67%对49.33%,p < 0.0001)。多因素分析显示,免疫功能低下与bstNGS检测病原体的效率较低相关(p = 0.04),而其他纳入的临床特征与bstNGS检测无显著相关性。此外,与未检测到病原体的患者相比,bstNGS检测到病原体的患者抗生素治疗结局更好(89.68%对62.50%;OR 7.53,95%CI 1.41 - 45.30;p = 0.02)。

结论

本研究表明bstNGS在检测LRTIs病原体方面的有效性,以及其作为重症监护病房潜在辅助诊断方法的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f077/12139122/ff3e8921d4d8/13054_2025_5470_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验