Suppr超能文献

通过盐酸氯胺分子桥实现钙钛矿太阳能电池中的协同双界面工程

Synergistic Dual-Interface Engineering in Perovskite Solar Cells via Chloramine Hydrochloride Molecular Bridges.

作者信息

Zhou Feiyi, Zhang Xu, Dai Runze, Guo Qingyue, Dong Yi, Meng Fanxiang, Wan Jun, Wang Zeyu, Lyu Huajie, Zheng Chenghang, He Qingquan, Wang Rui, Liu Peng, Pan Jun, Gao Xiang

机构信息

State Key Lab of Clean Energy Utilization, Institute of Carbon Neutrality, Zhejiang University, Hangzhou, 310027, China.

School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China.

出版信息

Angew Chem Int Ed Engl. 2025 Aug 4;64(32):e202507182. doi: 10.1002/anie.202507182. Epub 2025 Jun 29.

Abstract

High-performance perovskite solar cells (PSCs) require synergistic passivation strategies to address defects at the electron transport layer (ETL)/perovskite interface, impacting both efficiency and long-term stability. This study introduces chloramine hydrochlorides (CAHs) - 2-Chloroethylamine Hydrochloride (CEA), Bis(2-chloroethyl)amine Hydrochloride (BCEA), and Tris(2-Chloroethyl)Amine Hydrochloride (TCEA) - as bifunctional molecular bridges to simultaneously passivate defects at both ETL (SnO) and perovskite interfaces while controlling crystallization. Density functional theory calculations showed that TCEA forms strong Sn─Cl bonds, enhancing Sn⁴ coordination. In situ characterization revealed that TCEA accelerated perovskite formation, suppressed PbI, and promoted larger grains, thus minimizing grain boundary defects. This leads to an improved electron extraction efficiency, prolonged hot-carrier cooling, and a champion power conversion efficiency (PCE) of 25.25% (compared to 23.64% for controls), with negligible hysteresis and 90% PCE retention after 1000 h under ambient conditions. This study establishes a universal molecular design strategy for dual-interface engineering in high-efficiency and stable PSCs.

摘要

高性能钙钛矿太阳能电池(PSC)需要协同钝化策略来解决电子传输层(ETL)/钙钛矿界面处的缺陷,这会影响效率和长期稳定性。本研究引入盐酸氯胺(CAH)——2-氯乙胺盐酸盐(CEA)、双(2-氯乙基)胺盐酸盐(BCEA)和三(2-氯乙基)胺盐酸盐(TCEA)——作为双功能分子桥,以同时钝化ETL(SnO)和钙钛矿界面处的缺陷,同时控制结晶过程。密度泛函理论计算表明,TCEA形成强Sn─Cl键,增强了Sn⁴配位。原位表征显示,TCEA加速了钙钛矿的形成,抑制了PbI,并促进了更大晶粒的生长,从而最大限度地减少了晶界缺陷。这导致电子提取效率提高,热载流子冷却时间延长,最佳功率转换效率(PCE)达到25.25%(相比之下,对照组为23.64%),滞后现象可忽略不计,在环境条件下1000小时后PCE保留率为90%。本研究为高效稳定PSC中的双界面工程建立了一种通用的分子设计策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验