Yusupov Maksudbek, Tampieri Francesco, Matnazarova Shakhrizoda, Matyakubov Nosir, Canal Cristina, Bogaerts Annemie
Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan.
Department of Information Technologies, Tashkent International University of Education, Tashkent 100207, Uzbekistan.
J Phys Chem C Nanomater Interfaces. 2025 May 1;129(19):8927-8936. doi: 10.1021/acs.jpcc.5c01565. eCollection 2025 May 15.
This study investigates the impact of reactive oxygen species produced by nonthermal plasma on biopolymers using computer simulations. Specifically, reactive molecular dynamics simulations are employed to study the interaction between oxygen atomsa key short-lived component generated during direct plasma treatmentand the alginate molecule, which serves as the model system in our analysis. The simulations reveal that oxygen atom impact leads to significant structural changes, including oxygen addition (44.5%), glycosidic bond cleavage (13.5%), ring opening (31%), and organic peroxide formation (25%) (these events are not mutually exclusive, and therefore, the percentages do not sum directly to 100%). Additionally, the oxidation process results in carboxyl group reduction and CO detachment (13%), potentially altering the cross-linking properties of alginate. Our model results align with existing experiment findings and provide deep insight into the interaction between alginate and plasma-generated reactive species. This is fundamental for the use of biopolymers, particularly those capable of forming hydrogels, combined with plasma, for biomedical applications.
本研究通过计算机模拟研究了非热等离子体产生的活性氧对生物聚合物的影响。具体而言,采用反应分子动力学模拟来研究氧原子(直接等离子体处理过程中产生的一种关键短寿命成分)与藻酸盐分子之间的相互作用,藻酸盐分子是我们分析中的模型系统。模拟结果表明,氧原子的撞击会导致显著的结构变化,包括氧的添加(44.5%)、糖苷键断裂(13.5%)、开环(31%)和有机过氧化物的形成(25%)(这些事件并非相互排斥,因此,百分比之和并非直接为100%)。此外,氧化过程会导致羧基减少和CO脱离(13%),这可能会改变藻酸盐的交联特性。我们的模型结果与现有的实验结果一致,并为藻酸盐与等离子体产生的活性物种之间的相互作用提供了深入的见解。这对于生物聚合物的应用至关重要,特别是那些能够与等离子体结合形成水凝胶的生物聚合物,可用于生物医学应用。