Isobe Hiroshi, Suzuki Takayoshi, Suga Michihiro, Shen Jian-Ren, Yamaguchi Kizashi
Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
Center for Quantum Information and Quantum Biology, Osaka University Toyonaka Osaka 560-0043 Japan.
Chem Sci. 2025 Jun 3. doi: 10.1039/d5sc02386f.
Photosynthetic water oxidation, vital for dioxygen production and light energy conversion, is catalyzed by the oxygen-evolving complex of photosystem II, where the inorganic MnCaO cluster acts as the catalytic core. In this study, we investigate the functional significance of collective motions of amino acid side chains within the primary coordination sphere of the Mn cluster, focusing on their role in modulating the energetic demands for catalytic transformations in the S state. We applied regularized canonical correlation analysis to quantitatively correlate the three-dimensional arrangement of coordinating atoms with catalytic driving forces computed density functional theory. Our analysis reveals that distinct collective side chain motions profoundly influence the energetic requirements for structural reconfigurations of the Mn cluster, achieved through expansion and contraction of the ligand cavity while fine-tuning its geometry to stabilize key intermediates. Complementary predictions from a neural network-based machine learning model indicate that the coordination sphere exerts a variable energetic impact on the catalytic transformations of the Mn cluster, depending on the S-state environment. Integrated computational analyses suggest that the extended lifetime of the SY˙ state, consistently observed after three flash illuminations, may result from slow, progressive protein dynamics that continuously reshape the energy landscape, thereby shifting the equilibrium positions of rapid, reversible chemical processes over time. Overall, our findings demonstrate that collective motions in the primary coordination sphere constitute an active, dynamic framework essential for the efficient execution of multi-electron catalysis under ambient conditions, while simultaneously achieving a high selectivity with irreversible nature required for effective O evolution.
光合水氧化对于氧气产生和光能转换至关重要,由光系统II的放氧复合体催化,其中无机MnCaO簇作为催化核心。在本研究中,我们研究了Mn簇初级配位球内氨基酸侧链集体运动的功能意义,重点关注它们在调节S态催化转化能量需求方面的作用。我们应用正则化典型相关分析,将配位原子的三维排列与通过密度泛函理论计算的催化驱动力进行定量关联。我们的分析表明,不同的集体侧链运动深刻影响Mn簇结构重构的能量需求,这是通过配体腔的扩张和收缩实现的,同时微调其几何形状以稳定关键中间体。基于神经网络的机器学习模型的补充预测表明,配位球对Mn簇的催化转化具有可变的能量影响,这取决于S态环境。综合计算分析表明,在三次闪光照射后持续观察到的SY˙态延长寿命,可能源于缓慢、渐进的蛋白质动力学,这种动力学不断重塑能量景观,从而随着时间推移改变快速、可逆化学过程的平衡位置。总体而言,我们的研究结果表明,初级配位球中的集体运动构成了一个活跃的动态框架,对于在环境条件下高效执行多电子催化至关重要,同时实现有效氧气释放所需的不可逆性质的高选择性。