Hellman Abigail F, Clegg Paul S, Farquharson Colin, Millán José Luis, Alcaide-Corral Carlos J, Suchacki Karla J, Tavares Adriana A S
School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom.
The Roslin Institute, University of Edinburgh, Midlothian, United Kingdom.
Front Med (Lausanne). 2025 May 21;12:1597844. doi: 10.3389/fmed.2025.1597844. eCollection 2025.
Total-body PET is a recent development in clinical imaging that produces large datasets involving multiple tissues, enabling the use of new analytical methods for multi-organ assessments, such as network analysis-a well-developed method in neuroimaging. The skeletal system provides a good model for applying network analysis to total-body PET, as bone serves many classical whole-body functions as well as being an endocrine regulator of metabolism. Previous reports have suggested an association between the expression of bone-specific phosphatase, orphan 1 and disorders of altered energy metabolism such as obesity and diabetes. Here, we explore how lacking phosphatase, orphan 1 affects the skeletal metabolic networks of mice as a test approach for deploying network analysis in total-body PET.
We retrospectively analysed [F]fluorodeoxyglucose total-body PET/CT images from six 13-week-old wild type mice, three 22-week-old wild type mice, and three 22-week-old mice. Pearson correlation networks were created using the dynamic data from seven bone regions, with a Pearson threshold of >0.6 (significant at < 0.005).
The bone metabolic networks of 13-week-old wild type mice were found to robustly resist changes to the data from different PET measurements, increased noise, and shortened scan length. Key features were repeatedly observed, namely that all bones except the spine are highly inter-correlated, while the spine has minimal correlation to other bones. When network analysis was used to compare the three cohorts, the older wild type network had similar features to the young mouse, whereas the network had increased correlations across all bones. An all-cohort network separated the data into one part including only bones from the wild type mice (13 nodes) and one part only bones from the mice (8 nodes, 95% separation purity). Within the wild type section, the same bone from each young and old mouse were correlated.
We demonstrated network analysis is a promising method for studying whole-body PET, sensitive to dynamic details in the data without relying on assumptions or modelling. The proposed method could be applied to other total-body PET data-of healthy and diseased subjects, with different radiotracers, and more-to further elucidate tissue interactions at a systems level.
全身正电子发射断层扫描(PET)是临床成像领域的一项最新进展,它能生成包含多个组织的大型数据集,从而能够使用新的分析方法进行多器官评估,比如网络分析——这是神经成像中一种成熟的方法。骨骼系统为将网络分析应用于全身PET提供了一个良好的模型,因为骨骼不仅具有许多经典的全身功能,还是新陈代谢的内分泌调节因子。先前的报告表明,骨特异性磷酸酶孤儿1的表达与能量代谢改变的疾病(如肥胖症和糖尿病)之间存在关联。在此,我们探究缺乏磷酸酶孤儿1如何影响小鼠的骨骼代谢网络,以此作为在全身PET中应用网络分析的一种测试方法。
我们回顾性分析了来自6只13周龄野生型小鼠、3只22周龄野生型小鼠和3只22周龄[具体基因缺失小鼠,原文未明确写出]小鼠的[F]氟脱氧葡萄糖全身PET/CT图像。使用来自7个骨区域的动态数据创建了Pearson相关网络,Pearson阈值>0.6(在<0.005时具有显著性)。
发现13周龄野生型小鼠的骨代谢网络能够有力地抵抗来自不同PET测量数据的变化、增加的噪声以及缩短的扫描长度。反复观察到关键特征,即除脊柱外的所有骨骼高度相互关联,而脊柱与其他骨骼的相关性最小。当使用网络分析比较这三个队列时,年龄较大的野生型网络与年轻小鼠的网络具有相似特征,而[具体基因缺失小鼠,原文未明确写出]小鼠的网络在所有骨骼中的相关性增加。一个全队列网络将数据分为一部分,仅包括来自野生型小鼠的骨骼(13个节点),另一部分仅包括来自[具体基因缺失小鼠,原文未明确写出]小鼠的骨骼(8个节点,分离纯度95%)。在野生型部分内,每只年轻和年老小鼠的相同骨骼相互关联。
我们证明网络分析是一种很有前景的研究全身PET的方法,对数据中的动态细节敏感,且不依赖假设或建模。所提出的方法可应用于其他全身PET数据——健康和患病受试者的、使用不同放射性示踪剂的等等——以在系统层面进一步阐明组织间的相互作用。