Suchacki Karla J, Alcaide-Corral Carlos J, Nimale Samah, Macaskill Mark G, Stimson Roland H, Farquharson Colin, Freeman Tom C, Tavares Adriana A S
University/British Heart Foundation (BHF) Centre for Cardiovascular Science, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom.
Edinburgh Imaging, University of Edinburgh, Edinburgh, United Kingdom.
Front Med (Lausanne). 2021 Sep 20;8:740615. doi: 10.3389/fmed.2021.740615. eCollection 2021.
Bone is now regarded to be a key regulator of a number of metabolic processes, in addition to the regulation of mineral metabolism. However, our understanding of complex bone metabolic interactions at a systems level remains rudimentary. molecular biology and bioinformatics approaches have frequently been used to understand the mechanistic changes underlying disease at the cell level, however, these approaches lack the capability to interrogate dynamic multi-bone metabolic interactions . Here we present a novel and integrative approach to understand complex bone metabolic interactions using total-body positron emission tomography (PET) network analysis of murine F-FDG scans, as a biomarker of glucose metabolism in bones. In this report we show that different bones within the skeleton have a unique glucose metabolism and form a complex metabolic network, which could not be identified using single tissue simplistic PET standard uptake values analysis. The application of our approach could reveal new physiological and pathological tissue interactions beyond skeletal metabolism, due to PET radiotracers diversity and the advent of clinical total-body PET systems.
除了调节矿物质代谢外,骨骼现在被认为是许多代谢过程的关键调节因子。然而,我们在系统水平上对复杂的骨代谢相互作用的理解仍然很基础。分子生物学和生物信息学方法经常被用于在细胞水平上理解疾病背后的机制变化,然而,这些方法缺乏探究动态多骨代谢相互作用的能力。在这里,我们提出了一种新颖的综合方法,通过对小鼠F-FDG扫描进行全身正电子发射断层扫描(PET)网络分析,作为骨骼中葡萄糖代谢的生物标志物,来理解复杂的骨代谢相互作用。在本报告中,我们表明骨骼内不同的骨骼具有独特的葡萄糖代谢,并形成一个复杂的代谢网络,这是使用单一组织简单PET标准摄取值分析无法识别的。由于PET放射性示踪剂的多样性和临床全身PET系统的出现,我们方法的应用可能揭示骨骼代谢之外新的生理和病理组织相互作用。