Suppr超能文献

基于纳米光子硅波导中光子发射体的发光测温法。

Luminescence thermometry based on photon emitters in nanophotonic silicon waveguides.

作者信息

Sandholzer Kilian, Rinner Stephan, Edelmann Justus, Reiserer Andreas

机构信息

TUM School of Natural Sciences, Department of Physics and Munich Center for Quantum Science and Technology (MCQST), Technical University of Munich, James-Franck-Straße 1, D-85748 Garching, Germany.

Max-Planck-Institute of Quantum Optics, Hans-Kopfermann-Straße, 1, D-85748 Garching, Germany.

出版信息

Nanophotonics. 2025 Feb 19;14(11):2005-2014. doi: 10.1515/nanoph-2024-0678. eCollection 2025 Jun.

Abstract

The reliable measurement and accurate control of the temperature within nanophotonic devices is a key prerequisite for their application in both classical and quantum technologies. Established approaches use sensors that are attached in proximity to the components, which only offers a limited spatial resolution and thus impedes the measurement of local heating effects. Here, we, therefore, study an alternative temperature sensing technique that is based on measuring the luminescence of erbium emitters directly integrated into nanophotonic silicon waveguides. To cover the entire temperature range from 295 K to 2 K, we investigate two different approaches: The thermal activation of nonradiative decay channels for temperatures above 200 K and the thermal depopulation of spin and crystal field levels at lower temperatures. The achieved sensitivity is 0.22(4) %/K at room temperature and increases up to 420(50) %/K at approximately 2 K. Within a few-minute measurement interval, we thus achieve a measurement precision that ranges from 0.04(1) K at the lowest studied temperature to 6(1) K at ambient conditions. In the future, the measurement time can be further reduced by optimizing the excitation pulse sequence and the fiber-to-chip coupling efficiency. Combining this with spatially selective implantation promises precise thermometry from ambient to cryogenic temperatures with a spatial resolution down to a few nanometers.

摘要

在纳米光子器件中实现可靠的温度测量和精确控制,是其在经典技术和量子技术中应用的关键前提。现有方法使用附着在组件附近的传感器,这种方法空间分辨率有限,因此阻碍了局部热效应的测量。因此,我们在此研究一种基于直接测量集成到纳米光子硅波导中的铒发光体发光的替代温度传感技术。为覆盖从295 K到2 K的整个温度范围,我们研究了两种不同方法:温度高于200 K时非辐射衰变通道的热激活,以及较低温度下自旋和晶体场能级的热去极化。在室温下实现的灵敏度为0.22(4) %/K,在约2 K时增至420(50) %/K。在几分钟的测量间隔内,我们因此实现了从最低研究温度下的0.04(1) K到环境条件下的6(1) K的测量精度。未来,通过优化激发脉冲序列和光纤到芯片的耦合效率,测量时间可进一步缩短。将此与空间选择性注入相结合,有望实现从环境温度到低温的精确温度测量,空间分辨率低至几纳米。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aea3/12133216/2938a13cb0fc/j_nanoph-2024-0678_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验