Yang Fan, Liu Shichen, Wang Hao, Lee Heun Jin, Phillips Rob, Thomson Matt
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Department of Applied Physics, California Institute of Technology, Pasadena, CA, USA.
ArXiv. 2025 May 22:arXiv:2407.00842v2.
Cytoskeletal networks have a self-healing property where networks can repair defects to maintain structural integrity. However, both the mechanisms and dynamics of healing remain largely unknown. Here we report a healing mechanism in microtubule-motor networks by active crosslinking. We directly generate defects using a light-controlled microtubule-motor system in O-shaped and V-shaped networks, and observe that the defects can self-heal. Combining theory and experiment, we find that the V-shaped networks must overcome internal elastic resistance in order to heal cracks, giving rise to a bifurcation of dynamics dependent on the initial opening angle of the crack: the crack merges below a critical angle and opens up at larger angles. Simulation of a continuum model reproduces the bifurcation dynamics, revealing the importance of a boundary layer where free motors and microtubules can actively crosslink and thereby heal the defects. We also formulate a simple elastic-rod model that can qualitatively predict the critical angle, which is found to be tunable by the network geometry.
细胞骨架网络具有自我修复特性,即网络能够修复缺陷以维持结构完整性。然而,修复的机制和动力学在很大程度上仍然未知。在此,我们报告了一种通过主动交联实现微管-马达网络修复的机制。我们使用光控微管-马达系统在O形和V形网络中直接产生缺陷,并观察到缺陷能够自我修复。结合理论与实验,我们发现V形网络为了修复裂缝必须克服内部弹性阻力,这导致了依赖于裂缝初始开口角度的动力学分岔:裂缝在临界角度以下合并,而在较大角度时则会张开。连续介质模型的模拟再现了分岔动力学,揭示了一个边界层的重要性,在该边界层中自由马达和微管能够主动交联从而修复缺陷。我们还建立了一个简单的弹性杆模型,该模型能够定性地预测临界角度,并且发现该临界角度可由网络几何形状调节。