Jagadale Sudhir D, Bhosale Sidhanath V, Bhosale Sheshanath V
Polymers and Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, 500007, India.
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
Chem Asian J. 2025 Sep;20(17):e00125. doi: 10.1002/asia.202500125. Epub 2025 Jun 5.
Pseudocapacitors (PSCs) are attractive alternatives with great potential in the next generation of electrical energy storage (EES) devices. So far, PSCs are mainly fabricated using inorganic transition metal oxides. To overcome the cost and stability issues of such PSCs, organic electrode materials available from renewable sources are attracting researchers' attention. In this study, to enhance the electrochemical performance of PSCs, we non-covalently functionalized reduced graphene oxide (rGO) substrate with a redox-active (2Z,2'Z)-2,2'-(1,4-phenylene)bis(3-(pyridin-4-yl)acrylonitrile) (DCBS), yielding the composite electrode systems. The presence of the pyridine ring system in combination with the nitrile (─C≡N) functional group provides an additional contribution of faradaic reversible redox reactions and stability of the DCBS/rGO electrode in PSC performance. Significantly, our DCBS/rGO composite electrode-based three-electrode supercapacitor (SC) device exhibited excellent specific capacitance of 318.98 F g at 0.5 A g current density. Moreover, in symmetric supercapacitor (SSC) cell configuration, the DCBS/rGO at 0.5 A g current density displayed C as high as 135.10 F g and an energy density of 24.31 Wh kg at 1080 W kg power density. The SSC device showed great C retention (98.3%) after 10000 galvanostatic charge-discharge (GCD) cycles at a current density of 3 A g. The present investigation underscores the DCBS/rGO based electrode materials offer ideas to improve the charge storage capacity, device stability and energy density for supercapacitors.
赝电容器(PSCs)是下一代电能存储(EES)设备中极具潜力的有吸引力的替代品。到目前为止,PSCs主要是使用无机过渡金属氧化物制造的。为了克服此类PSCs的成本和稳定性问题,可再生来源的有机电极材料正吸引着研究人员的关注。在本研究中,为了提高PSCs的电化学性能,我们用氧化还原活性的(2Z,2'Z)-2,2'-(1,4-亚苯基)双(3-(吡啶-4-基)丙烯腈)(DCBS)对还原氧化石墨烯(rGO)基底进行非共价功能化,得到复合电极系统。吡啶环系统与腈基(─C≡N)官能团的存在为法拉第可逆氧化还原反应提供了额外贡献,并使DCBS/rGO电极在PSCs性能方面具有稳定性。值得注意的是,我们基于DCBS/rGO复合电极的三电极超级电容器(SC)装置在0.5 A g电流密度下表现出318.98 F g的优异比电容。此外,在对称超级电容器(SSC)电池配置中,DCBS/rGO在0.5 A g电流密度下显示出高达135.10 F g的比电容和在1080 W kg功率密度下24.31 Wh kg的能量密度。该SSC装置在3 A g电流密度下进行10000次恒电流充放电(GCD)循环后显示出极高的比电容保持率(98.3%)。本研究强调基于DCBS/rGO的电极材料为提高超级电容器的电荷存储容量、器件稳定性和能量密度提供了思路。