文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

来自硫化物矿物风化环境的多种物种会氧化亚铁和还原态无机硫化合物。

Diverse spp. from sulfide mineral weathering environments oxidize ferrous iron and reduced inorganic sulfur compounds.

作者信息

Hobart Kathryn K, Walker Gabriel M, Feinberg Joshua M, Bailey Jake V, Jones Daniel S

机构信息

Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, Minnesota, USA.

Institute for Rock Magnetism, University of Minnesota, Minneapolis, Minnesota, USA.

出版信息

Appl Environ Microbiol. 2025 Jul 23;91(7):e0021625. doi: 10.1128/aem.00216-25. Epub 2025 Jun 5.


DOI:10.1128/aem.00216-25
PMID:40470961
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12285272/
Abstract

UNLABELLED: Microorganisms are important catalysts for the oxidation of reduced inorganic sulfur compounds. One environmentally important source of reduced sulfur is metal sulfide minerals that occur in economic mineral deposits and mine waste. Previous research found that spp. were abundant and active in long-term weathering experiments with simulated waste rock and tailings from the Duluth Complex, Northern Minnesota. We, therefore, isolated several strains of spp. from these long-term experiments and characterized their metabolic and genomic properties to provide insight into microbe-mineral interactions and the microbial biogeochemistry in these and other moderately acidic to circumneutral environments. The strains are all obligate chemolithoautotrophs capable of oxidizing inorganic sulfur compounds and ferrous iron. The strains grew over different pH ranges, but all grew between pH 4.5 and 7, matching the weathering conditions of the Duluth Complex rocks. All strains grew on the iron-sulfide mineral pyrrhotite (FeS, 0 < < 0.125) as the sole energy source, as well as hydrogen sulfide and thiosulfate, which are products of sulfide mineral breakdown. Despite their metabolic similarities, each strain encodes a distinct pathway for the oxidation of reduced inorganic sulfur compounds as well as differences in nitrogen metabolism that reveal diverse genomic capabilities among the group. Our results show that spp. are primary producers that likely play a role in sulfide mineral breakdown in moderately acidic to circumneutral mine waste, and the metabolic diversity within the genus may explain their success in sulfide mineral-rich and other sulfidic environments. IMPORTANCE: Metal sulfide minerals, such as pyrite and pyrrhotite, are one of the main sources of reduced sulfur in the global sulfur cycle. The chemolithotrophic microorganisms that break down these minerals in natural and engineered settings are catalysts for biogeochemical sulfur cycling and have important applications in biotechnological processes such as biomining and bioremediation. is a recently described genus of sulfur-oxidizing bacteria that are abundant primary producers in diverse terrestrial environments, including waste rock and tailings from metal mining operations. In this study, we explored the genomic and metabolic properties of new isolates from this genus, and the implications for their ecophysiology and biotechnological potential in ore and waste from economic mineral deposits.

摘要

未标记:微生物是还原态无机硫化合物氧化的重要催化剂。还原态硫的一个重要环境来源是存在于经济矿床和矿山废弃物中的金属硫化物矿物。先前的研究发现,在明尼苏达州北部德卢斯杂岩体模拟废石和尾矿的长期风化实验中,[某菌属]种类丰富且活跃。因此,我们从这些长期实验中分离出了几株[某菌属]菌株,并对其代谢和基因组特性进行了表征,以深入了解微生物与矿物的相互作用以及这些环境和其他中等酸性至近中性环境中的微生物生物地球化学。这些菌株都是专性化能自养菌,能够氧化无机硫化合物和亚铁离子。这些菌株在不同的pH范围内生长,但都在pH 4.5至7之间生长,与德卢斯杂岩体岩石的风化条件相符。所有菌株都能以硫化铁矿物磁黄铁矿(FeS,0 < [某参数] < 0.125)作为唯一能源生长,也能以硫化物矿物分解产物硫化氢和硫代硫酸盐为能源生长。尽管它们在代谢上有相似之处,但每个菌株编码的还原态无机硫化合物氧化途径不同,氮代谢也存在差异,这揭示了该菌群中不同的基因组能力。我们的结果表明,[某菌属]是初级生产者,可能在中等酸性至近中性矿山废弃物中的硫化物矿物分解中发挥作用,该属内的代谢多样性可能解释了它们在富含硫化物矿物的环境和其他硫化环境中取得成功的原因。 重要性:黄铁矿和磁黄铁矿等金属硫化物矿物是全球硫循环中还原态硫的主要来源之一。在自然和工程环境中分解这些矿物的化能无机营养微生物是生物地球化学硫循环的催化剂,在生物采矿和生物修复等生物技术过程中有重要应用。[某菌属]是最近描述的一类硫氧化细菌,是包括金属采矿作业的废石和尾矿在内的各种陆地环境中丰富的初级生产者。在本研究中,我们探索了该属新分离菌株的基因组和代谢特性,以及它们在经济矿床的矿石和废弃物中的生态生理学和生物技术潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/2706b49cbbe1/aem.00216-25.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/b8420266d902/aem.00216-25.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/2fc3087dea39/aem.00216-25.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/7e93db85d766/aem.00216-25.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/eb340a784199/aem.00216-25.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/2706b49cbbe1/aem.00216-25.f005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/b8420266d902/aem.00216-25.f001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/2fc3087dea39/aem.00216-25.f002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/7e93db85d766/aem.00216-25.f003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/eb340a784199/aem.00216-25.f004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33d1/12285272/2706b49cbbe1/aem.00216-25.f005.jpg

相似文献

[1]
Diverse spp. from sulfide mineral weathering environments oxidize ferrous iron and reduced inorganic sulfur compounds.

Appl Environ Microbiol. 2025-7-23

[2]
Historic mine waste contains diverse microbial communities that reflect waste type and geochemistry.

Appl Environ Microbiol. 2025-8-20

[3]
Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.

Appl Environ Microbiol. 2017-8-1

[4]
Cultivation and metabolic versatility of novel and ubiquitous chemolithoautotrophic from mangrove sediments.

Microbiol Spectr. 2025-7-23

[5]
Sulfide Oxidation Products Support Microbial Metabolism at Interface Environments in a Marine-Like Serpentinizing Spring in Northern California.

Geobiology. 2025

[6]
Genomic and phenotypic insights into Serratia interaction with plants from an ecological perspective.

Braz J Microbiol. 2025-6

[7]
Short-Term Memory Impairment

2025-1

[8]
Overlooked role of heterotrophic prokaryotes in sulfur oxidation makes the sediment of the Bohai Sea a sufficient sink of hydrogen sulfide.

mBio. 2025-7-7

[9]
Sexual Harassment and Prevention Training

2025-1

[10]
Sulfur microenvironments as hotspots for biogenic pyrite formation.

Sci Rep. 2025-6-20

本文引用的文献

[1]
Microbial communities from weathered outcrops of a sulfide-rich ultramafic intrusion, and implications for mine waste management.

Environ Microbiol. 2023-12

[2]
Sulfur cycling at natural hydrocarbon and sulfur seeps in Santa Paula Creek, CA.

Geobiology. 2022-9

[3]
The Wsp system of links surface sensing and cell envelope stress.

Proc Natl Acad Sci U S A. 2022-5-3

[4]
Evolutionary Divergence of the Wsp Signal Transduction Systems in Beta- and Gammaproteobacteria.

Appl Environ Microbiol. 2021-10-28

[5]
Iron Oxidation by a Fused Cytochrome-Porin Common to Diverse Iron-Oxidizing Bacteria.

mBio. 2021-8-31

[6]
Catalytic Properties of Flavocytochrome c Sulfide Dehydrogenase from Haloalkaliphilic Bacterium Thioalkalivibrio paradoxus.

Biochemistry (Mosc). 2021-3

[7]
The IMG/M data management and analysis system v.6.0: new tools and advanced capabilities.

Nucleic Acids Res. 2021-1-8

[8]
Versatile cyanobacteria control the timing and extent of sulfide production in a Proterozoic analog microbial mat.

ISME J. 2020-12

[9]
DRAM for distilling microbial metabolism to automate the curation of microbiome function.

Nucleic Acids Res. 2020-9-18

[10]
Sulfite oxidation by the quinone-reducing molybdenum sulfite dehydrogenase SoeABC from the bacterium Aquifex aeolicus.

Biochim Biophys Acta Bioenerg. 2020-7-28

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索