文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

健康研究人员在解释线性回归假设时存在的常见误解,一项横断面研究。

Common misconceptions held by health researchers when interpreting linear regression assumptions, a cross-sectional study.

作者信息

Jones Lee, Barnett Adrian, Vagenas Dimitrios

机构信息

Research Methods Group, Faculty of Health, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Queensland, Australia.

AusHSI, Centre for Healthcare Transformation, Faculty of Health, School of Public Health and Social Work, Queensland University of Technology, Kelvin Grove, Queensland, Australia.

出版信息

PLoS One. 2025 Jun 5;20(6):e0299617. doi: 10.1371/journal.pone.0299617. eCollection 2025.


DOI:10.1371/journal.pone.0299617
PMID:40471888
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12140278/
Abstract

BACKGROUND: Statistical models are valuable tools for interpreting complex relationships within health systems. These models rely on a framework of statistical assumptions that, when correctly addressed, enable valid inferences and conclusions. However, failure to appropriately address these assumptions can lead to flawed analyses, resulting in misleading conclusions and contributing to the adoption of ineffective or harmful treatments and poorer health outcomes. This study examines researchers' understanding of the widely used linear regression model, focusing on assumptions, common misconceptions, and recommendations for improving research practices. METHODS: One hundred papers were randomly sampled from the journal PLOS ONE, which used linear regression in the materials and methods section and were from the health and biomedical field in 2019. Two independent volunteer statisticians rated each paper for the reporting of linear regression assumptions. The prevalence of assumptions reported by authors was described using frequencies, percentages, and 95% confidence intervals. The agreement of statistical raters was assessed using Gwet's statistic. RESULTS: Of the 95 papers that met the inclusion and exclusion criteria, only 37% reported checking any linear regression assumptions, 22% reported checking one assumption, and no authors checked all assumptions. The biggest misconception was that the Y variable should be checked for normality, with only 5 of the 28 papers correctly checking the residuals for normality. CONCLUSION: The reporting of linear regression assumptions is alarmingly low. When assumptions are checked, the reporting is often inadequate or incorrectly checked. Addressing these issues requires a cultural shift in research practices, including improved statistical training, more rigorous journal review processes, and a broader understanding of regression as a unifying framework. Greater emphasis must be placed on evaluating model assumptions and their implications rather than the rote application of statistical methods. Careful consideration of assumptions helps improve the reliability of statistical conclusions, reducing the risk of misleading findings influencing clinical practice and potentially affecting patient outcomes.

摘要

背景:统计模型是解释卫生系统内复杂关系的宝贵工具。这些模型依赖于一个统计假设框架,若能正确处理这些假设,就能得出有效的推断和结论。然而,未能恰当处理这些假设可能导致分析存在缺陷,从而得出误导性结论,并促使采用无效或有害的治疗方法,进而导致更差的健康结果。本研究考察了研究人员对广泛使用的线性回归模型的理解,重点关注假设、常见误解以及改进研究实践的建议。 方法:从《公共科学图书馆·综合》杂志中随机抽取100篇论文,这些论文在材料与方法部分使用了线性回归,且来自2019年的健康与生物医学领域。两名独立的志愿者统计学家对每篇论文中线性回归假设的报告进行评分。作者报告的假设的流行程度用频率、百分比和95%置信区间来描述。使用格韦特统计量评估统计评分者之间的一致性。 结果:在符合纳入和排除标准的95篇论文中,只有37%的论文报告检查了任何线性回归假设,22%的论文报告检查了一个假设,没有作者检查所有假设。最大的误解是应该检查Y变量的正态性,在28篇论文中只有5篇正确地检查了残差的正态性。 结论:线性回归假设的报告率低得惊人。在检查假设时,报告往往不充分或检查错误。解决这些问题需要研究实践中的文化转变,包括改进统计培训、更严格的期刊审稿流程,以及将回归作为一个统一框架的更广泛理解。必须更加重视评估模型假设及其影响,而不是机械地应用统计方法。仔细考虑假设有助于提高统计结论的可靠性,降低误导性发现影响临床实践并可能影响患者结局的风险。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/e29e63be0e32/pone.0299617.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/591635b0ca51/pone.0299617.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/694e0b1c899b/pone.0299617.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/d63f5a96b563/pone.0299617.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/578ae5b2ab89/pone.0299617.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/ef5a2860c51f/pone.0299617.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/f8ad3b39640c/pone.0299617.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/edd18e3f0e8c/pone.0299617.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/e29e63be0e32/pone.0299617.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/591635b0ca51/pone.0299617.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/694e0b1c899b/pone.0299617.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/d63f5a96b563/pone.0299617.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/578ae5b2ab89/pone.0299617.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/ef5a2860c51f/pone.0299617.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/f8ad3b39640c/pone.0299617.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/edd18e3f0e8c/pone.0299617.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/90e3/12140278/e29e63be0e32/pone.0299617.g008.jpg

相似文献

[1]
Common misconceptions held by health researchers when interpreting linear regression assumptions, a cross-sectional study.

PLoS One. 2025-6-5

[2]
Linear regression reporting practices for health researchers, a cross-sectional meta-research study.

PLoS One. 2025-3-20

[3]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

[4]
Regression assumptions in clinical psychology research practice-a systematic review of common misconceptions.

PeerJ. 2017-5-16

[5]
Understanding and checking the assumptions of linear regression: a primer for medical researchers.

Clin Exp Ophthalmol. 2014-8

[6]
Testing for normality in regression models: mistakes abound (but may not matter).

R Soc Open Sci. 2025-4-30

[7]
Qualitative Study

2025-1

[8]
Assumption-checking rather than (just) testing: The importance of visualization and effect size in statistical diagnostics.

Behav Res Methods. 2024-2

[9]
The Effectiveness of Integrated Care Pathways for Adults and Children in Health Care Settings: A Systematic Review.

JBI Libr Syst Rev. 2009

[10]
Implementation of SAMPL guidelines: Recommendations for improving statistical reporting in biomedical journals.

Clin Med (Lond). 2025-5

引用本文的文献

[1]
Coping Strategies and Health-Related Quality of Life in Breast Cancer Survivors.

Eur J Investig Health Psychol Educ. 2025-7-17

本文引用的文献

[1]
Linear regression reporting practices for health researchers, a cross-sectional meta-research study.

PLoS One. 2025-3-20

[2]
The Use and Efficacy of Oral Phenylephrine Versus Placebo Treating Nasal Congestion Over the Years on Adults: A Systematic Review.

Cureus. 2023-11-19

[3]
Comparing the prevalence of statistical reporting inconsistencies in COVID-19 preprints and matched controls: a registered report.

R Soc Open Sci. 2023-8-16

[4]
Assumption-checking rather than (just) testing: The importance of visualization and effect size in statistical diagnostics.

Behav Res Methods. 2024-2

[5]
Is the future of peer review automated?

BMC Res Notes. 2022-6-11

[6]
Tolerating bad health research: the continuing scandal.

Trials. 2022-6-2

[7]
Review of guidance papers on regression modeling in statistical series of medical journals.

PLoS One. 2022

[8]
Statistical Assumptions in Orthopaedic Literature: Are Study Findings at Risk?

Cureus. 2021-10-12

[9]
Violating the normality assumption may be the lesser of two evils.

Behav Res Methods. 2021-12

[10]
Using implementation science to close the gap between the optimal and typical practice of quantitative methods in clinical science.

J Abnorm Psychol. 2019-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索