Suppr超能文献

在肽类天然产物生物合成中发现将天冬氨酸转化为氨基丙二酸的两步酶级联反应。

Discovery of a Two-Step Enzyme Cascade Converting Aspartate to Aminomalonate in Peptide Natural Product Biosynthesis.

作者信息

Kim Hye Won, Kang Sangwook, Kim Sihyeon, Lee Hyunbin, Hur Yegang, Song Woon Ju, Oh Dong-Chan, Kim Seokhee

机构信息

Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea.

Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea.

出版信息

J Am Chem Soc. 2025 Jun 18;147(24):20909-20918. doi: 10.1021/jacs.5c05071. Epub 2025 Jun 5.

Abstract

Aminomalonic acid (Ama) is found in various natural products and protein hydrolysates of multiple organisms, but the understanding of its biosynthetic origin remains largely limited. By exploiting a biosynthetic gene cluster for ribosomally synthesized and post-translationally modified peptides (RiPPs), which are rich sources of new enzyme chemistry, we identified a novel two-enzyme pathway for Ama biosynthesis. This biosynthetic pathway, mediated by an Fe(II)/2-oxoglutarate-dependent oxygenase (Fe(II)/2OG), SmaO, and an atypical Fe(II)-dependent histidine-aspartate (HD) domain enzyme, SmaX, converts aspartate (Asp) to β-hydroxyaspartic acid (Hya) intermediate and ultimately to Ama. These tandem enzymatic reactions─hydroxylation of the carbon next to an acid functional group and subsequent four-electron oxidative bond cleavage in α-hydroxy acid─are similar to those associated with other known HD domain oxygenases, PhnZ and TmpB. However, SmaX also exhibits unique features, such as C-C bond cleavage in α-hydroxycarboxylate using a single Fe cofactor, in contrast to the C-P bond cleavage using a mixed-valent diiron cofactor in PhnZ and TmpB. Bioinformatic analysis reveals that this two-enzyme cascade may be present in various biosynthetic pathways for peptide natural products, including RiPPs and nonribosomal peptides (NRPs). Collectively, our study demonstrates the presence of a novel Ama biosynthetic pathway and suggests its widespread distribution in peptide natural product biosynthesis.

摘要

氨基丙二酸(Ama)存在于多种天然产物以及多种生物的蛋白质水解物中,但人们对其生物合成起源的了解仍然非常有限。通过利用一个用于核糖体合成及翻译后修饰肽(RiPPs)的生物合成基因簇(这类基因簇是新酶化学的丰富来源),我们鉴定出了一条用于Ama生物合成的新型双酶途径。这条生物合成途径由一种依赖于Fe(II)/2-氧代戊二酸的加氧酶(Fe(II)/2OG)SmaO和一种非典型的依赖于Fe(II)的组氨酸-天冬氨酸(HD)结构域酶SmaX介导,将天冬氨酸(Asp)转化为β-羟基天冬氨酸(Hya)中间体,并最终转化为Ama。这些串联酶促反应——酸官能团旁边碳的羟基化以及随后α-羟基酸中的四电子氧化键断裂——与其他已知的HD结构域加氧酶PhnZ和TmpB相关的反应相似。然而,SmaX也表现出独特的特征,例如使用单个Fe辅因子在α-羟基羧酸盐中进行C-C键断裂,这与PhnZ和TmpB中使用混合价态二铁辅因子进行C-P键断裂形成对比。生物信息学分析表明,这种双酶级联反应可能存在于多种肽天然产物的生物合成途径中,包括RiPPs和非核糖体肽(NRP)。总的来说,我们的研究证明了一种新型Ama生物合成途径的存在,并表明其在肽天然产物生物合成中广泛分布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验