Suppr超能文献

胸部手术期间机械通气的个体化参数:优化呼吸支持。

Individualized parameters for mechanical ventilation during thoracic operations: Optimizing respiratory support.

作者信息

Batyrkhanov Mukhtar, Mukhtarkhanova Dilyara

机构信息

Department of Surgery with Courses In Reanimatology and Anesthesiology Kazakh-Russian Medical University.

Department of Cardiology Asfendiyarov Kazakh National Medical University.

出版信息

Can J Respir Ther. 2025 May 13;61:117-127. doi: 10.29390/001c.137289. eCollection 2025.

Abstract

INTRODUCTION

Adequate respiratory support with mechanical lung ventilation (MLV) is crucial for maintaining gas exchange and pulmonary circulation hemodynamics in patients with severe lung diseases in the perioperative period. However, the selection of optimal parameters for ventilation is often a serious problem, which can lead to the development of complications and worsening of treatment outcomes.

PURPOSE

This study aimed to evaluate the effectiveness of the developed method of individual calculation of ventilator parameters to optimize respiratory support in patients with various lung diseases undergoing surgical intervention.

METHODS

This study used a prospective clinical approach to optimize mechanical lung ventilation by calculating individualized ventilatory parameters based on each patient's lung function during surgery.

RESULTS

The results showed that in patients with unilateral lesions, the application of the developed method achieved PaO2 94.1±6.7 mmHg and PaCO2 36.2±4.5 mmHg, mean pulmonary artery pressure 25.8±3.6 mmHg, as well as cardiac output 4.8±0.8 l/min and oxygen transport 489±77 ml/min at the final post-operative stage. Even in bilateral diffuse lesions, individualized ventilatory parameters provided PaO2 79.6±11.3 mmHg and reduced bronchial resistance to 11.4±3.6 cmH2O/l/sec after surgery. Despite gross respiratory dysfunction, the personalized approach maintained PaO2 79.2±9.7 mmHg and PaCO2 46.1±6.3 mmHg postoperatively in patients with congenital pulmonary malformations such as cystic hypoplasia.

CONCLUSION

This study demonstrates the high efficacy of personalized approaches to respiratory support management to improve patient outcomes and reduce the risk of complications in patients with lung disease in the perioperative period.

摘要

引言

在围手术期,对于患有严重肺部疾病的患者,通过机械肺通气(MLV)提供足够的呼吸支持对于维持气体交换和肺循环血流动力学至关重要。然而,选择最佳通气参数往往是一个严重问题,这可能导致并发症的发生和治疗效果的恶化。

目的

本研究旨在评估所开发的呼吸机参数个体化计算方法在优化接受手术干预的各种肺部疾病患者呼吸支持方面的有效性。

方法

本研究采用前瞻性临床方法,通过在手术期间根据每位患者的肺功能计算个体化通气参数来优化机械肺通气。

结果

结果显示,在单侧病变患者中,应用所开发的方法在术后最终阶段实现了动脉血氧分压(PaO2)为94.1±6.7 mmHg、动脉血二氧化碳分压(PaCO2)为36.2±4.5 mmHg、平均肺动脉压为25.8±3.6 mmHg,以及心输出量为4.8±0.8 l/min和氧输送量为489±77 ml/min。即使在双侧弥漫性病变中,个体化通气参数在术后也使PaO2达到79.6±11.3 mmHg,并将支气管阻力降低至11.4±3.6 cmH2O/l/sec。对于先天性肺发育不良等先天性肺部畸形患者,尽管存在严重的呼吸功能障碍,但个性化方法在术后仍维持了PaO2为79.2±9.7 mmHg和PaCO2为46.1±6.3 mmHg。

结论

本研究证明了个性化呼吸支持管理方法在改善围手术期肺部疾病患者的治疗效果和降低并发症风险方面具有很高的疗效。

相似文献

1
Individualized parameters for mechanical ventilation during thoracic operations: Optimizing respiratory support.
Can J Respir Ther. 2025 May 13;61:117-127. doi: 10.29390/001c.137289. eCollection 2025.
3
[Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
Zhonghua Jie He He Hu Xi Za Zhi. 2024 Feb 12;47(2):101-119. doi: 10.3760/cma.j.cn112147-20231019-00247.
5
[Effect of neurally adjusted ventilatory assist ventilation in severe neurological cerebrovascular diseases patients undergoing mechanical ventilation].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Feb;35(2):182-188. doi: 10.3760/cma.j.cn121430-20220822-00771.
10
Combined effects of prone positioning and airway pressure release ventilation on gas exchange in patients with acute lung injury.
Acta Anaesthesiol Scand. 2003 May;47(5):516-24. doi: 10.1034/j.1399-6576.2003.00109.x.

本文引用的文献

2
Psychosomatics: Communication of the Central Nervous System through Connection to Tissues, Organs, and Cells.
Clin Psychopharmacol Neurosci. 2024 Nov 30;22(4):565-577. doi: 10.9758/cpn.24.1197. Epub 2024 Sep 6.
3
ChatGPT fails the Polish board certification examination in internal medicine: artificial intelligence still has much to learn.
Pol Arch Intern Med. 2023 Nov 29;133(11). doi: 10.20452/pamw.16608. Epub 2023 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验