文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

泌尿外科肿瘤组织病理学中人工智能应用的全球趋势:一项20年的文献计量分析。

Global trends in the use of artificial intelligence for urological tumor histopathology: A 20-year bibliometric analysis.

作者信息

Dai Fazhong, He Yifeng, Duan Juan, Lin Kangjian, Lv Qian, Zhao Zhongxiang, Zou Yesong, Jiang Jianhong, Zheng Zongtai, Qiu Xiaofu

机构信息

Guangdong Provincial Emergency Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.

Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.

出版信息

Digit Health. 2025 Jun 4;11:20552076251348834. doi: 10.1177/20552076251348834. eCollection 2025 Jan-Dec.


DOI:10.1177/20552076251348834
PMID:40475298
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12138227/
Abstract

BACKGROUND: The field of urological tumor histopathology has long relied on subjective pathologist expertise, leading to diagnostic variability. Recent advances in digital pathology and artificial intelligence (AI) offer transformative potential by standardizing diagnoses, improving accuracy, and bridging healthcare disparities. This study conducted a 20-year bibliometric analysis to map global research trends and innovations in AI-driven urological pathology. METHODS: For this bibliometric analysis, literature from 2004 to 2024 was retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and Microsoft Excel were used to visualize coauthorship, cocitation, and co-occurrence analyses of countries/regions, institutions, authors, references, and keywords in the field of AI for urological tumor histopathology. RESULTS: A total of 199 papers were included. Research on AI-driven urological tumor pathology has steadily increased since 2005, with a significant surge between 2020 and 2023. The United States made the largest contribution in terms of publications (131), citations (4725), and collaborations. The most productive institution was the University of Southern California, while Patel et al. and Epstein et al. were identified as the most active and most cocited authors, respectively. European Urology led in both publication volume and impact. Keyword analysis identified "machine learning," "prostate cancer," "deep learning," and "diagnosis" as major research foci. CONCLUSIONS: The integration of AI into urological tumor pathology demonstrates transformative potential, significantly enhancing diagnostic accuracy and efficiency through automated analysis of whole-slide imaging and Gleason grading, comparable to pathologist-level performance. However, clinical translation encounters critical challenges, including data bias, model interpretability ("black-box" limitations), and regulatory-ethical complexities. Future advancements hinge on developing explainable AI frameworks, multimodal systems integrating histopathology, radiomics, and genomics and establishing global collaborative networks to address resource disparities. Prioritizing standardized data protocols, fairness-aware algorithms, and dynamic regulatory guidelines will be essential to ensure equitable, reliable, and clinically actionable AI solutions, ultimately advancing precision oncology in urological malignancies.

摘要

背景:泌尿外科肿瘤组织病理学领域长期以来依赖病理学家的主观专业知识,导致诊断存在差异。数字病理学和人工智能(AI)的最新进展通过使诊断标准化、提高准确性和弥合医疗保健差距,展现出变革潜力。本研究进行了一项为期20年的文献计量分析,以描绘人工智能驱动的泌尿外科病理学的全球研究趋势和创新。 方法:对于这项文献计量分析,从科学网核心合集检索了2004年至2024年的文献。使用CiteSpace、VOSviewer和Microsoft Excel对泌尿外科肿瘤组织病理学领域的人工智能中的国家/地区、机构、作者、参考文献和关键词进行合作作者、共被引和共现分析的可视化。 结果:共纳入199篇论文。自2005年以来,对人工智能驱动的泌尿外科肿瘤病理学的研究稳步增加,在2020年至2023年期间有显著激增。美国在出版物数量(131篇)、引用次数(4725次)和合作方面贡献最大。产出最多的机构是南加州大学,而帕特尔等人和爱泼斯坦等人分别被确定为最活跃和被引用最多的作者。《欧洲泌尿外科》在发表量和影响力方面均居领先地位。关键词分析确定“机器学习”“前列腺癌”“深度学习”和“诊断”为主要研究重点。 结论:将人工智能整合到泌尿外科肿瘤病理学中显示出变革潜力,通过对全切片成像和Gleason分级进行自动分析,可显著提高诊断准确性和效率,与病理学家水平的表现相当。然而,临床转化面临关键挑战,包括数据偏差、模型可解释性(“黑箱”局限性)以及监管伦理复杂性。未来的进展取决于开发可解释的人工智能框架、整合组织病理学、放射组学和基因组学的多模态系统,以及建立全球合作网络以解决资源差异问题。优先制定标准化数据协议、公平感知算法和动态监管指南对于确保公平、可靠且具有临床可操作性的人工智能解决方案至关重要,最终推动泌尿外科恶性肿瘤的精准肿瘤学发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/a2b2d78aafda/10.1177_20552076251348834-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/27b4a44a7506/10.1177_20552076251348834-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/d7c112c4fa24/10.1177_20552076251348834-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/0d8ebc6c2b2a/10.1177_20552076251348834-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/389153c56766/10.1177_20552076251348834-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/2703fd06b99c/10.1177_20552076251348834-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/941571591432/10.1177_20552076251348834-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/a999230b0506/10.1177_20552076251348834-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/a2b2d78aafda/10.1177_20552076251348834-fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/27b4a44a7506/10.1177_20552076251348834-fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/d7c112c4fa24/10.1177_20552076251348834-fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/0d8ebc6c2b2a/10.1177_20552076251348834-fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/389153c56766/10.1177_20552076251348834-fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/2703fd06b99c/10.1177_20552076251348834-fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/941571591432/10.1177_20552076251348834-fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/a999230b0506/10.1177_20552076251348834-fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d8f/12138227/a2b2d78aafda/10.1177_20552076251348834-fig8.jpg

相似文献

[1]
Global trends in the use of artificial intelligence for urological tumor histopathology: A 20-year bibliometric analysis.

Digit Health. 2025-6-4

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[4]
Application of artificial intelligence in Alzheimer's disease: a bibliometric analysis.

Front Neurosci. 2025-2-14

[5]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[6]
Artificial intelligence-assisted multimodal imaging for the clinical applications of breast cancer: a bibliometric analysis.

Discov Oncol. 2025-4-16

[7]
The published role of artificial intelligence in drug discovery and development: a bibliometric and social network analysis from 1990 to 2023.

J Cheminform. 2025-5-8

[8]
Mapping the landscape of artificial intelligence in skin cancer research: a bibliometric analysis.

Front Oncol. 2023-10-13

[9]
Radiomics in precision medicine for colorectal cancer: a bibliometric analysis (2013-2023).

Front Oncol. 2024-10-30

[10]
Worldwide research landscape of artificial intelligence in lung disease: A scientometric study.

Heliyon. 2024-5-13

引用本文的文献

[1]
A national survey on the integration of traditional Chinese medicine and artificial intelligence: attitudes and perceptions from the individuals with health needs.

Integr Med Res. 2025-12

本文引用的文献

[1]
Pathology-based deep learning features for predicting basal and luminal subtypes in bladder cancer.

BMC Cancer. 2025-2-20

[2]
Clinical Implications of Basic Research: Exploring the Transformative Potential of Spatial 'Omics in Uro-oncology.

Eur Urol. 2025-1

[3]
Bibliometric analysis: A few suggestions.

Curr Probl Cardiol. 2024-8

[4]
Biomedical Data Science, Artificial Intelligence, and Ethics: Navigating Challenges in the Face of Explosive Growth.

Annu Rev Biomed Data Sci. 2024-8

[5]
Swiss digital pathology recommendations: results from a Delphi process conducted by the Swiss Digital Pathology Consortium of the Swiss Society of Pathology.

Virchows Arch. 2024-7

[6]
Saline-assisted fascial exposure (SAFE) technique to improve nerve-sparing in robot-assisted laparoscopic radical prostatectomy.

BJU Int. 2024-4

[7]
Neural networks, AI, and the goals of modeling.

Behav Brain Sci. 2023-12-6

[8]
Revolutionizing Digital Pathology With the Power of Generative Artificial Intelligence and Foundation Models.

Lab Invest. 2023-11

[9]
Safety and efficacy of immune checkpoint inhibitors in advanced penile cancer: report from the Global Society of Rare Genitourinary Tumors.

J Natl Cancer Inst. 2023-12-6

[10]
Artificial intelligence in cancer pathology: Challenge to meet increasing demands of precision medicine.

Int J Oncol. 2023-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索