Dai Fazhong, He Yifeng, Duan Juan, Lin Kangjian, Lv Qian, Zhao Zhongxiang, Zou Yesong, Jiang Jianhong, Zheng Zongtai, Qiu Xiaofu
Guangdong Provincial Emergency Hospital, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, Guangdong, China.
Guangdong Provincial Hospital of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
Digit Health. 2025 Jun 4;11:20552076251348834. doi: 10.1177/20552076251348834. eCollection 2025 Jan-Dec.
BACKGROUND: The field of urological tumor histopathology has long relied on subjective pathologist expertise, leading to diagnostic variability. Recent advances in digital pathology and artificial intelligence (AI) offer transformative potential by standardizing diagnoses, improving accuracy, and bridging healthcare disparities. This study conducted a 20-year bibliometric analysis to map global research trends and innovations in AI-driven urological pathology. METHODS: For this bibliometric analysis, literature from 2004 to 2024 was retrieved from the Web of Science Core Collection. CiteSpace, VOSviewer, and Microsoft Excel were used to visualize coauthorship, cocitation, and co-occurrence analyses of countries/regions, institutions, authors, references, and keywords in the field of AI for urological tumor histopathology. RESULTS: A total of 199 papers were included. Research on AI-driven urological tumor pathology has steadily increased since 2005, with a significant surge between 2020 and 2023. The United States made the largest contribution in terms of publications (131), citations (4725), and collaborations. The most productive institution was the University of Southern California, while Patel et al. and Epstein et al. were identified as the most active and most cocited authors, respectively. European Urology led in both publication volume and impact. Keyword analysis identified "machine learning," "prostate cancer," "deep learning," and "diagnosis" as major research foci. CONCLUSIONS: The integration of AI into urological tumor pathology demonstrates transformative potential, significantly enhancing diagnostic accuracy and efficiency through automated analysis of whole-slide imaging and Gleason grading, comparable to pathologist-level performance. However, clinical translation encounters critical challenges, including data bias, model interpretability ("black-box" limitations), and regulatory-ethical complexities. Future advancements hinge on developing explainable AI frameworks, multimodal systems integrating histopathology, radiomics, and genomics and establishing global collaborative networks to address resource disparities. Prioritizing standardized data protocols, fairness-aware algorithms, and dynamic regulatory guidelines will be essential to ensure equitable, reliable, and clinically actionable AI solutions, ultimately advancing precision oncology in urological malignancies.
背景:泌尿外科肿瘤组织病理学领域长期以来依赖病理学家的主观专业知识,导致诊断存在差异。数字病理学和人工智能(AI)的最新进展通过使诊断标准化、提高准确性和弥合医疗保健差距,展现出变革潜力。本研究进行了一项为期20年的文献计量分析,以描绘人工智能驱动的泌尿外科病理学的全球研究趋势和创新。 方法:对于这项文献计量分析,从科学网核心合集检索了2004年至2024年的文献。使用CiteSpace、VOSviewer和Microsoft Excel对泌尿外科肿瘤组织病理学领域的人工智能中的国家/地区、机构、作者、参考文献和关键词进行合作作者、共被引和共现分析的可视化。 结果:共纳入199篇论文。自2005年以来,对人工智能驱动的泌尿外科肿瘤病理学的研究稳步增加,在2020年至2023年期间有显著激增。美国在出版物数量(131篇)、引用次数(4725次)和合作方面贡献最大。产出最多的机构是南加州大学,而帕特尔等人和爱泼斯坦等人分别被确定为最活跃和被引用最多的作者。《欧洲泌尿外科》在发表量和影响力方面均居领先地位。关键词分析确定“机器学习”“前列腺癌”“深度学习”和“诊断”为主要研究重点。 结论:将人工智能整合到泌尿外科肿瘤病理学中显示出变革潜力,通过对全切片成像和Gleason分级进行自动分析,可显著提高诊断准确性和效率,与病理学家水平的表现相当。然而,临床转化面临关键挑战,包括数据偏差、模型可解释性(“黑箱”局限性)以及监管伦理复杂性。未来的进展取决于开发可解释的人工智能框架、整合组织病理学、放射组学和基因组学的多模态系统,以及建立全球合作网络以解决资源差异问题。优先制定标准化数据协议、公平感知算法和动态监管指南对于确保公平、可靠且具有临床可操作性的人工智能解决方案至关重要,最终推动泌尿外科恶性肿瘤的精准肿瘤学发展。
Front Biosci (Landmark Ed). 2022-8-31
Front Neurosci. 2025-2-14
Front Oncol. 2024-10-30
Curr Probl Cardiol. 2024-8
Annu Rev Biomed Data Sci. 2024-8
Behav Brain Sci. 2023-12-6