文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全球肺部疾病人工智能研究格局:一项科学计量学研究。

Worldwide research landscape of artificial intelligence in lung disease: A scientometric study.

作者信息

Zeng Meng, Wang XianQi, Chen Wei

机构信息

Department of Radiology, Southwest Hospital, Third Military Medical University, Chongqing, China.

出版信息

Heliyon. 2024 May 13;10(10):e31129. doi: 10.1016/j.heliyon.2024.e31129. eCollection 2024 May 30.


DOI:10.1016/j.heliyon.2024.e31129
PMID:38826704
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11141367/
Abstract

PURPOSE: To perform a comprehensive bibliometric analysis of the application of artificial intelligence (AI) in lung disease to understand the current status and emerging trends of this field. MATERIALS AND METHODS: AI-based lung disease research publications were selected from the Web of Science Core Collection. Citespace, VOS viewer and Excel were used to analyze and visualize co-authorship, co-citation, and co-occurrence analysis of authors, keywords, countries/regions, references and institutions in this field. RESULTS: Our study included a total of 5210 papers. The number of publications on AI in lung disease showed explosive growth since 2017. China and the United States lead in publication numbers. The most productive author were Li, Weimin and Qian Wei, with Shanghai Jiaotong University as the most productive institution. Radiology was the most co-cited journal. Lung cancer and COVID-19 emerged as the most studied diseases. Deep learning, convolutional neural network, lung cancer, radiomics will be the focus of future research. CONCLUSIONS: AI-based diagnosis and treatment of lung disease has become a research hotspot in recent years, yielding significant results. Future work should focus on establishing multimodal AI models that incorporate clinical, imaging and laboratory information. Enhanced visualization of deep learning, AI-driven differential diagnosis model for lung disease and the creation of international large-scale lung disease databases should also be considered.

摘要

目的:对人工智能(AI)在肺部疾病中的应用进行全面的文献计量分析,以了解该领域的现状和新趋势。 材料与方法:从科学网核心合集选取基于AI的肺部疾病研究出版物。使用Citespace、VOS viewer和Excel对该领域作者、关键词、国家/地区、参考文献和机构的合作作者、共被引和共现分析进行分析和可视化。 结果:我们的研究共纳入5210篇论文。自2017年以来,肺部疾病中关于AI的出版物数量呈爆发式增长。中国和美国在出版物数量上领先。产出最多的作者是李为民和钱伟,产出最多的机构是上海交通大学。放射学是被共引最多的期刊。肺癌和新冠肺炎成为研究最多的疾病。深度学习、卷积神经网络、肺癌、放射组学将是未来研究的重点。 结论:基于AI的肺部疾病诊断和治疗近年来已成为研究热点,并取得了显著成果。未来的工作应侧重于建立整合临床、影像和实验室信息的多模态AI模型。还应考虑增强深度学习的可视化、AI驱动的肺部疾病鉴别诊断模型以及创建国际大规模肺部疾病数据库。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/aa4e55073907/gr6a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/23868e7f80eb/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/4abd749c19db/gr2a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/885cd7632ea2/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/3b4891ebe7ff/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/59795310ac23/gr5a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/aa4e55073907/gr6a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/23868e7f80eb/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/4abd749c19db/gr2a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/885cd7632ea2/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/3b4891ebe7ff/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/59795310ac23/gr5a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd04/11141367/aa4e55073907/gr6a.jpg

相似文献

[1]
Worldwide research landscape of artificial intelligence in lung disease: A scientometric study.

Heliyon. 2024-5-13

[2]
Research Trends in the Application of Artificial Intelligence in Oncology: A Bibliometric and Network Visualization Study.

Front Biosci (Landmark Ed). 2022-8-31

[3]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[4]
Global research trends of artificial intelligence applied in esophageal carcinoma: A bibliometric analysis (2000-2022) CiteSpace and VOSviewer.

Front Oncol. 2022-8-25

[5]
The global research of artificial intelligence in lung cancer: a 20-year bibliometric analysis.

Front Oncol. 2024-2-2

[6]
Mapping the landscape of artificial intelligence in skin cancer research: a bibliometric analysis.

Front Oncol. 2023-10-13

[7]
Quantitative analysis of artificial intelligence on liver cancer: A bibliometric analysis.

Front Oncol. 2023-2-16

[8]
Artificial intelligence applicated in gastric cancer: A bibliometric and visual analysis CiteSpace.

Front Oncol. 2023-1-4

[9]
The Global Research of Artificial Intelligence on Prostate Cancer: A 22-Year Bibliometric Analysis.

Front Oncol. 2022-3-1

[10]
Application of artificial intelligence in rheumatic disease: a bibliometric analysis.

Clin Exp Med. 2024-8-23

本文引用的文献

[1]
Pneumonia-Plus: a deep learning model for the classification of bacterial, fungal, and viral pneumonia based on CT tomography.

Eur Radiol. 2023-12

[2]
Trends and statistics of artificial intelligence and radiomics research in Radiology, Nuclear Medicine, and Medical Imaging: bibliometric analysis.

Eur Radiol. 2023-11

[3]
Self-supervised learning for medical image classification: a systematic review and implementation guidelines.

NPJ Digit Med. 2023-4-26

[4]
Artificial Intelligence and Interstitial Lung Disease: Diagnosis and Prognosis.

Invest Radiol. 2023-8-1

[5]
Artificial intelligence in lung cancer diagnosis and prognosis: Current application and future perspective.

Semin Cancer Biol. 2023-2

[6]
Deep Learning Techniques to Diagnose Lung Cancer.

Cancers (Basel). 2022-11-13

[7]
Global research trends and foci of artificial intelligence-based tumor pathology: a scientometric study.

J Transl Med. 2022-9-6

[8]
Thirty years of research on physical activity, mental health, and wellbeing: A scientometric analysis of hotspots and trends.

Front Public Health. 2022

[9]
Artificial intelligence in clinical applications for lung cancer: diagnosis, treatment and prognosis.

Clin Chem Lab Med. 2022-11-25

[10]
Deep Learning-based Outcome Prediction in Progressive Fibrotic Lung Disease Using High-Resolution Computed Tomography.

Am J Respir Crit Care Med. 2022-10-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索