Li Zhuo, Kaur Navjot, Santpere Gabriel, Muchnik Sydney K, Sindhu Suvimal Kumar, Qi Cai, Shibata Mikihito, Clément Olivier, Klarić Thomas S, de Martin Xabier, Luria Victor, Cho Hyesun, Li Mingfeng, Shibata Akemi, Tebbenkamp Andrew T N, Ma Shaojie, Han Wenqi, Kim Suel-Kee, Pochareddy Sirisha, Duy Phan Q, Xing Xiaojun, Bao Yunhua, Xu Xuming, Gladwyn-Ng Ivan Enghian, Cullen Hayley Daniella, Paolino Annalisa, Fenlon Laura R, Kozulin Peter, Suárez Rodrigo, Risgaard Ryan D, Gulden Forrest O, Karger Amir, Suzuki Ikuo K, Hirata Tatsumi, Gobeske Kevin T, Richards Linda J, Sousa André M M, Heng Julian I, Sestan Nenad
Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA.
bioRxiv. 2025 May 21:2025.05.20.652233. doi: 10.1101/2025.05.20.652233.
Mammals have evolved a plethora of adaptations that have enabled them to thrive in diverse environments. Among the most significant is the emergence of a more complex brain, exemplified by the dramatic transformation of the dorsal cortex from a single layer of excitatory projection neurons (ExNs) in ancestors to a multilayered cerebral neocortex enriched with diverse intratelencephalic (IT) and extratelencephalic (ET) ExN subtypes. These ExNs established specialized projection systems, such as the corticospinal tract and corpus callosum, enhancing brain connectivity and functionality. However, the evolutionary mechanisms underlying these mammalian-specific adaptations remain elusive. By comparing the landscape of gene expression and cis-regulatory elements (CREs) in mouse ExN subtypes and by cross-species examination of mammalian and non-mammalian CREs, we identified mammalian-specific CREs and expression patterns. The mammalian-specific CREs include a subset bound by ZBTB18 that are associated with genes defining IT and ET subtypes and connectivity. Both ZBTB18 and these target genes have previously been implicated in intellectual disability and autism. Deletion of in mouse ExNs dysregulated target gene expression, reduced molecular diversity, diminished corticospinal and callosal projections, and increased intrahemispheric cortico-cortical association projections to the prefrontal cortex, resembling features of non-mammalian dorsal pallium. Interestingly, ZBTB18 binding motifs are highly enriched in callosally projecting IT-biased CREs, where they show higher conservation specifically in mammals. This study uncovers critical components and mammalian-specific evolutionary adaptations within a regulatory node essential for neocortical ExN identity and connectivity, with implications for neurodevelopmental and neuropsychiatric disorders.
哺乳动物已经进化出了大量适应性特征,使它们能够在多样的环境中繁衍生息。其中最重要的是更复杂大脑的出现,其典型表现为背侧皮质从祖先的单层兴奋性投射神经元(ExNs)戏剧性地转变为富含多种脑内(IT)和脑外(ET)ExN亚型的多层大脑新皮质。这些ExNs建立了专门的投射系统,如皮质脊髓束和胼胝体,增强了大脑的连通性和功能。然而,这些哺乳动物特有的适应性背后的进化机制仍然难以捉摸。通过比较小鼠ExN亚型中的基因表达图谱和顺式调控元件(CREs),以及对哺乳动物和非哺乳动物CREs进行跨物种研究,我们确定了哺乳动物特有的CREs和表达模式。哺乳动物特有的CREs包括一个由ZBTB18结合的子集,这些子集与定义IT和ET亚型及连通性的基因相关。ZBTB18和这些靶基因此前都与智力残疾和自闭症有关。在小鼠ExNs中删除 会使靶基因表达失调,分子多样性降低,皮质脊髓和胼胝体投射减少,并增加到前额叶皮质的半球内皮质-皮质联合投射,类似于非哺乳动物背侧 pallium的特征。有趣的是,ZBTB18结合基序在胼胝体投射的IT偏向性CREs中高度富集,在这些区域它们在哺乳动物中表现出更高的保守性。这项研究揭示了新皮质ExN身份和连通性所必需的调控节点内的关键成分和哺乳动物特有的进化适应性,对神经发育和神经精神疾病具有启示意义。