Wagner Nikolaus R, Sinha Ashis, Siththanandan Verl, Kowalchuk Angelica M, MacDonald Jessica L, Tharin Suzanne
Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States.
Department of Neurosurgery, Stanford University Medical Center, Center for Academic Medicine, Palo Alto, CA, United States.
Front Neurosci. 2022 Sep 29;16:931333. doi: 10.3389/fnins.2022.931333. eCollection 2022.
The evolutionary emergence of the corticospinal tract and corpus callosum are thought to underpin the expansion of complex motor and cognitive abilities in mammals. Molecular mechanisms regulating development of the neurons whose axons comprise these tracts, the corticospinal and callosal projection neurons, remain incompletely understood. Our previous work identified a genomic cluster of microRNAs (miRNAs), /12qF1, that is unique to placental mammals and specifically expressed by corticospinal neurons, and excluded from callosal projection neurons, during development. We found that one of these, miR-409-3p, can convert layer V callosal into corticospinal projection neurons, acting in part through repression of the transcriptional regulator . Here we show that miR-409-3p also directly represses the transcriptional co-regulator , which is highly expressed by callosal projection neurons from the earliest stages of neurogenesis. is highly expressed by intermediate progenitor cells (IPCs) in the embryonic neocortex while , which encodes miR-409-3p, is excluded from these progenitors. miR-409-3p gain-of-function (GOF) in IPCs results in a phenocopy of established loss-of-function (LOF). At later developmental stages, both miR-409-3p GOF and LOF promote the expression of corticospinal at the expense of callosal projection neuron markers in layer V. Taken together, this work identifies previously undescribed roles for miR-409-3p in controlling IPC numbers and for in controlling callosal fate. Thus, miR-409-3p, possibly in cooperation with other /12qF1 miRNAs, represses as part of the multifaceted regulation of the refinement of neuronal cell fate within layer V, combining molecular regulation at multiple levels in both progenitors and post-mitotic neurons.
皮质脊髓束和胼胝体的进化出现被认为是哺乳动物复杂运动和认知能力扩展的基础。调控其轴突构成这些神经束的神经元(皮质脊髓和胼胝体投射神经元)发育的分子机制仍未完全明确。我们之前的研究确定了一个微小RNA(miRNA)基因组簇,即12qF1,它是胎盘哺乳动物所特有的,在发育过程中由皮质脊髓神经元特异性表达,而胼胝体投射神经元不表达。我们发现其中一个miRNA,即miR - 409 - 3p,能够将V层胼胝体投射神经元转化为皮质脊髓投射神经元,部分是通过抑制转录调节因子来实现的。在此我们表明,miR - 409 - 3p还直接抑制转录共调节因子,该因子从神经发生的最早阶段起就在胼胝体投射神经元中高表达。在胚胎新皮质的中间祖细胞(IPC)中高表达,而编码miR - 409 - 3p的在这些祖细胞中不表达。在IPC中miR - 409 - 3p功能获得(GOF)导致已确定的功能丧失(LOF)的表型模拟。在发育后期,miR - 409 - 3p的GOF和的LOF都以牺牲V层胼胝体投射神经元标记物为代价促进皮质脊髓标记物的表达。综上所述,这项研究确定了miR - 409 - 3p在控制IPC数量方面以及在控制胼胝体命运方面以前未被描述的作用。因此,miR - 409 - 3p可能与其他12qF1 miRNAs协同作用,抑制作为V层神经元细胞命运细化多方面调节的一部分,在祖细胞和有丝分裂后神经元中结合了多个水平的分子调节。