Suppr超能文献

噬菌体特异性的多目标学习与设计

Multiobjective learning and design of bacteriophage specificity.

作者信息

Novy Nathan, Huss Phil, Evert Sarah, Romero Philip A, Raman Srivatsan

机构信息

University of Wisconsin-Madison, Biochemistry.

Duke University, Biomedical Engineering.

出版信息

bioRxiv. 2025 May 19:2025.05.19.654895. doi: 10.1101/2025.05.19.654895.

Abstract

To better understand and design proteins, it is crucial to consider the multifunctional landscapes on which all proteins exist. Proteins are often optimized for single functions during design and engineering, without considering the countless other functionalities that may contribute to or interfere with the intended outcome. In this work, we apply deep learning to understand and design the multifunctional host-targeting landscape of the T7 bacteriophage receptor binding protein for enhanced infectivity, pre-defined specificity, and high generality in virulence toward unseen strains. We compare several different model architectures and design approaches and experimentally characterize designed phages optimized for 26 diverse tasks. We demonstrate that with multiobjective machine learning, it is possible to design complex specificities at success rates that can enable low-throughput validation of predicted hits. Our results show that the targeting capabilities of T7 are highly plastic, with opposite specificities often separated by only a few mutations. This level of tunability underscores how models trained on multifunctional data can uncover key principles of phage biology and specificity. The same modeling framework can be applied to guide the multiobjective design of other proteins or mutable biological systems, offering a general strategy for navigating multifunctional landscapes.

摘要

为了更好地理解和设计蛋白质,考虑所有蛋白质所处的多功能格局至关重要。在设计和工程过程中,蛋白质通常针对单一功能进行优化,而没有考虑可能有助于或干扰预期结果的无数其他功能。在这项工作中,我们应用深度学习来理解和设计T7噬菌体受体结合蛋白的多功能宿主靶向格局,以增强其感染性、预定义的特异性以及对未见过的菌株的高毒力普遍性。我们比较了几种不同的模型架构和设计方法,并通过实验表征了针对26种不同任务进行优化设计的噬菌体。我们证明,通过多目标机器学习,可以以能够实现对预测命中进行低通量验证的成功率来设计复杂的特异性。我们的结果表明,T7的靶向能力具有高度可塑性,相反的特异性通常仅由少数几个突变分隔。这种可调性水平突出了在多功能数据上训练的模型如何能够揭示噬菌体生物学和特异性的关键原理。相同的建模框架可用于指导其他蛋白质或可变生物系统的多目标设计,为探索多功能格局提供了一种通用策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验