Price Adelle, Rasolofomanana-Rajery Sakaiza, Manpearl Keenan, Robertson Charles E, Krebs Nancy F, Frank Daniel N, Krishnan Arjun, Hendricks Audrey E, Tang Minghua
Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
Department of Medicine, Division of Infectious Diseases, University of Colorado Anschutz Medical Center, Aurora, CO 80045.
bioRxiv. 2025 May 22:2024.11.01.621627. doi: 10.1101/2024.11.01.621627.
While studies have explored differences in gut microbiome development for infant liquid diets (breastmilk, formula), little is known about the impact of complementary foods on infant gut microbiome development. Here, we investigated how different protein-rich foods (i.e., meat vs. dairy) affect fecal metagenomics and metabolomics during early complementary feeding from 5-12 months in U.S. formula-fed infants from a randomized controlled feeding trial. We used a network representation learning approach to model the time-dependent, complex interactions between microbiome features, metabolite compounds, and diet. We then used the embedded space to detect features associated with age and diet type and found the meat diet group was enriched with microbial genes encoding amino acid, nucleic acid, and carbohydrate metabolism. Compared to a more traditional differential abundance analysis, which analyzes features independently and found no significant diet associations, network node embedding represents the infant samples, microbiome features, and metabolites in a single transformed space revealing otherwise undetected associations between infant diet and the gut microbiome.
虽然已有研究探讨了婴儿流质饮食(母乳、配方奶)在肠道微生物群发育方面的差异,但对于辅食对婴儿肠道微生物群发育的影响却知之甚少。在此,我们在美国一项针对配方奶喂养婴儿的随机对照喂养试验中,研究了不同的富含蛋白质的食物(即肉类与奶制品)在5至12个月的早期辅食喂养期间如何影响粪便宏基因组学和代谢组学。我们使用了一种网络表示学习方法来模拟微生物群特征、代谢物化合物和饮食之间随时间变化的复杂相互作用。然后,我们利用嵌入空间来检测与年龄和饮食类型相关的特征,发现肉类饮食组富含编码氨基酸、核酸和碳水化合物代谢的微生物基因。与更传统的差异丰度分析相比,传统分析独立分析特征且未发现显著的饮食关联,而网络节点嵌入在单个变换空间中表示婴儿样本、微生物群特征和代谢物,揭示了婴儿饮食与肠道微生物群之间原本未被发现的关联。