Suppr超能文献

钠通道失活的分子基础。

Molecular Basis of Sodium Channel Inactivation.

作者信息

Liu Yichen, Galpin Jason D, Ahern Christopher A, Bezanilla Francisco

机构信息

Committee on Neurobiology, University of Chicago, Chicago, IL, USA.

Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA.

出版信息

bioRxiv. 2025 May 23:2025.05.22.655422. doi: 10.1101/2025.05.22.655422.

Abstract

Voltage-gated sodium channels initiate action potentials and control electrical signaling throughout the animal kingdom. Fast inactivation is an essential auto-inhibitory mechanism and requisite component of sodium channel physiology. Recent structural and electrophysiological results are inconsistent with the canonical "ball and chain" model of fast inactivation thus necessitating an updated theoretical framework. Here, we use encoded fluorescence spectroscopy and high-resolution electrophysiology to capture key steps in the fast inactivation mechanism, from voltage-sensor activation to pore occlusion, an ultra-fast process which occurs in less than 2 milliseconds. Upon depolarization, activation of the domain IV voltage sensor initiates cytoplasmic DIII_DIV linker movement and quickly repositions the IFM motif into a hydrophobic pocket adjacent to the pore. This triggers a structural rearrangement of the pocket. The phenylalanine of the IFM motif contacts the pore-forming helices via a hydrophobic interaction with S6 of DIV and an aromatic/hydrophobic interaction with S6 of DIIII. These two interactions occur only after both S6 segments rotate, thus exposing the hydrophobic gate into the pore producing the fast inactivation. Based on the current results, we propose an alternative "lock and key" model to explain the molecular mechanism of fast inactivation.

摘要

电压门控钠通道引发动作电位,并控制整个动物界的电信号传导。快速失活是一种重要的自动抑制机制,也是钠通道生理学的必要组成部分。最近的结构和电生理结果与经典的快速失活“球链”模型不一致,因此需要一个更新的理论框架。在这里,我们使用编码荧光光谱和高分辨率电生理学来捕捉快速失活机制中的关键步骤,从电压传感器激活到孔道阻塞,这是一个在不到2毫秒内发生的超快速过程。去极化时,结构域IV电压传感器的激活引发细胞质DIII_DIV连接子的移动,并迅速将IFM基序重新定位到靠近孔道的疏水口袋中。这触发了口袋的结构重排。IFM基序的苯丙氨酸通过与DIV的S6的疏水相互作用以及与DIIII的S6的芳香/疏水相互作用与孔道形成螺旋接触。这两种相互作用仅在两个S6片段都旋转后才发生,从而将疏水门暴露到孔道中,导致快速失活。基于目前的结果,我们提出了一种替代的“锁钥”模型来解释快速失活的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5b85/12139949/551e7c22a346/nihpp-2025.05.22.655422v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验