Suppr超能文献

基于具有平滑性先验知识的高斯过程回归的对比变化小角中子散射中部分散射函数的增强估计方法。

Enhanced estimation method for partial scattering functions in contrast variation small-angle neutron scattering via Gaussian process regression with prior knowledge of smoothness.

作者信息

Obayashi Ippei, Miyajima Shinya, Tanaka Kazuaki, Mayumi Koichi

机构信息

Center for Artificial Intelligence and Mathematical Data Science, Okayama University, Japan.

Faculty of Science and Engineering, Iwate University, Japan.

出版信息

J Appl Crystallogr. 2025 May 31;58(Pt 3):976-991. doi: 10.1107/S1600576725003334. eCollection 2025 Jun 1.

Abstract

Contrast variation small-angle neutron scattering (CV-SANS) is a powerful tool for evaluating the structure of multi-component systems. In CV-SANS, the scattering intensities () measured with different scattering contrasts are de-com-posed into partial scattering functions () of the self- and cross-correlations between components. Since the measurement has a measurement error, () must be estimated statistically from (). If no prior knowledge about () is available, the least-squares method is best, and this is the most popular estimation method. However, if prior knowledge is available, the estimation can be improved using Bayesian inference in a statistically authorized way. In this paper, we propose a novel method to improve the estimation of (), based on Gaussian process regression using prior knowledge about the smoothness and flatness of (). We demonstrate the method using synthetic core-shell and experimental polyrotaxane SANS data.

摘要

对比变化小角中子散射(CV-SANS)是评估多组分系统结构的强大工具。在CV-SANS中,用不同散射对比度测量的散射强度()被分解为组分之间自相关和互相关的部分散射函数()。由于测量存在测量误差,()必须从()进行统计估计。如果没有关于()的先验知识,最小二乘法是最好的,这也是最流行的估计方法。然而,如果有先验知识可用,则可以使用贝叶斯推理以统计认可的方式改进估计。在本文中,我们基于利用关于()的平滑度和平面度的先验知识的高斯过程回归,提出了一种改进()估计的新方法。我们使用合成核壳和实验聚轮烷SANS数据演示了该方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验